Remove Data Processing Remove IoT Remove Structured Data
article thumbnail

How EUROGATE established a data mesh architecture using Amazon DataZone

AWS Big Data

Their terminal operations rely heavily on seamless data flows and the management of vast volumes of data. Recently, EUROGATE has developed a digital twin for its container terminal Hamburg (CTH), generating millions of data points every second from Internet of Things (IoT)devices attached to its container handling equipment (CHE).

IoT 111
article thumbnail

Big Data Ingestion: Parameters, Challenges, and Best Practices

datapine

Operations data: Data generated from a set of operations such as orders, online transactions, competitor analytics, sales data, point of sales data, pricing data, etc. The gigantic evolution of structured, unstructured, and semi-structured data is referred to as Big data. Self-Service.

Big Data 100
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Gain insights from historical location data using Amazon Location Service and AWS analytics services

AWS Big Data

The solution consists of the following interfaces: IoT or mobile application – A mobile application or an Internet of Things (IoT) device allows the tracking of a company vehicle while it is in use and transmits its current location securely to the data ingestion layer in AWS. You’re now ready to query the tables using Athena.

Analytics 122
article thumbnail

New Software Development Initiatives Lead To Second Stage Of Big Data

Smart Data Collective

Unstructured data lacks a specific format or structure. As a result, processing and analyzing unstructured data is super-difficult and time-consuming. Semi-structured. Semi-structured data contains a mixture of both structured and unstructured data. Final Thoughts.

Big Data 101
article thumbnail

How Cloudera Data Flow Enables Successful Data Mesh Architectures

Cloudera

Those decentralization efforts appeared under different monikers through time, e.g., data marts versus data warehousing implementations (a popular architectural debate in the era of structured data) then enterprise-wide data lakes versus smaller, typically BU-Specific, “data ponds”.

Metadata 124
article thumbnail

The Data Behind Tokyo 2020: The Evolution of the Olympic Games

Sisense

Not only does it support the successful planning and delivery of each edition of the Games, but it also helps each successive OCOG to develop its own vision, to understand how a host city and its citizens can benefit from the long-lasting impact and legacy of the Games, and to manage the opportunities and risks created.

article thumbnail

5 Key Takeaways from #Current2023

Cloudera

Recently, Confluent hosted Current 2023 (formerly Kafka summit) in San Jose on Sept 26th and 27th. Use cases such as fraud monitoring, real-time supply chain insight, IoT-enabled fleet operations, real-time customer intent, and modernizing analytics pipelines are driving development activity.