Remove Data Processing Remove Modeling Remove Testing
article thumbnail

Self Hosting RAG Applications On Edge Devices with Langchain and Ollama–Part II

Analytics Vidhya

Introduction In the second part of our series on building a RAG application on a Raspberry Pi, we’ll expand on the foundation we laid in the first part, where we created and tested the core pipeline. In the first part, we created the core pipeline and tested it to ensure everything worked as expected.

article thumbnail

Why you should care about debugging machine learning models

O'Reilly on Data

Not least is the broadening realization that ML models can fail. And that’s why model debugging, the art and science of understanding and fixing problems in ML models, is so critical to the future of ML. Because all ML models make mistakes, everyone who cares about ML should also care about model debugging. [1]

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Microsoft Unveils Multimodal AI Capabilities to the Masses With JARVIS

Analytics Vidhya

The AI can connect and collaborate with multiple artificial intelligence models, such as ChatGPT and t5-base, to deliver a final result. With a demo hosted on the popular AI platform Huggingface, users can now explore and test JARVIS’s extraordinary capabilities.

article thumbnail

The DataOps Vendor Landscape, 2021

DataKitchen

Testing and Data Observability. DataOps needs a directed graph-based workflow that contains all the data access, integration, model and visualization steps in the data analytic production process. It orchestrates complex pipelines, toolchains, and tests across teams, locations, and data centers. Testing and Data Observability.

Testing 300
article thumbnail

Monetizing Analytics Features: Why Data Visualizations Will Never Be Enough

Think your customers will pay more for data visualizations in your application? Five years ago they may have. But today, dashboards and visualizations have become table stakes. Discover which features will differentiate your application and maximize the ROI of your embedded analytics. Brought to you by Logi Analytics.

article thumbnail

Introducing Cloudera Fine Tuning Studio for Training, Evaluating, and Deploying LLMs with Cloudera AI

Cloudera

Large Language Models (LLMs) will be at the core of many groundbreaking AI solutions for enterprise organizations. These enable customer service representatives to focus their time and attention on more high-value interactions, leading to a more cost-efficient service model. The Need for Fine Tuning Fine tuning solves these issues.

article thumbnail

7 types of tech debt that could cripple your business

CIO Business Intelligence

Using the companys data in LLMs, AI agents, or other generative AI models creates more risk. Build up: Databases that have grown in size, complexity, and usage build up the need to rearchitect the model and architecture to support that growth over time.

Risk 140