Remove Data Quality Remove Data Strategy Remove Data Transformation
article thumbnail

Data’s dark secret: Why poor quality cripples AI and growth

CIO Business Intelligence

As technology and business leaders, your strategic initiatives, from AI-powered decision-making to predictive insights and personalized experiences, are all fueled by data. Yet, despite growing investments in advanced analytics and AI, organizations continue to grapple with a persistent and often underestimated challenge: poor data quality.

article thumbnail

8 data strategy mistakes to avoid

CIO Business Intelligence

Organizations can’t afford to mess up their data strategies, because too much is at stake in the digital economy. How enterprises gather, store, cleanse, access, and secure their data can be a major factor in their ability to meet corporate goals. Here are some data strategy mistakes IT leaders would be wise to avoid.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

How ANZ Institutional Division built a federated data platform to enable their domain teams to build data products to support business outcomes

AWS Big Data

This post explores how the shift to a data product mindset is being implemented, the challenges faced, and the early wins that are shaping the future of data management in the Institutional Division. This principle makes sure data accountability remains close to the source, fostering higher data quality and relevance.

Metadata 105
article thumbnail

The Journey to DataOps Success: Key Takeaways from Transformation Trailblazers

DataKitchen

In early April 2021, DataKItchen sat down with Jonathan Hodges, VP Data Management & Analytics, at Workiva ; Chuck Smith, VP of R&D Data Strategy at GlaxoSmithKline (GSK) ; and Chris Bergh, CEO and Head Chef at DataKitchen, to find out about their enterprise DataOps transformation journey, including key successes and lessons learned.

article thumbnail

Straumann Group is transforming dentistry with data, AI

CIO Business Intelligence

But to augment its various businesses with ML and AI, Iyengar’s team first had to break down data silos within the organization and transform the company’s data operations. Digitizing was our first stake at the table in our data journey,” he says. The offensive side?

article thumbnail

A step-by-step guide to setting up a data governance program

IBM Big Data Hub

In our last blog , we delved into the seven most prevalent data challenges that can be addressed with effective data governance. Today we will share our approach to developing a data governance program to drive data transformation and fuel a data-driven culture.

article thumbnail

Unlock scalability, cost-efficiency, and faster insights with large-scale data migration to Amazon Redshift

AWS Big Data

However, you might face significant challenges when planning for a large-scale data warehouse migration. Data engineers are crucial for schema conversion and data transformation, and DBAs can handle cluster configuration and workload monitoring. Platform architects define a well-architected platform.