Remove Data Quality Remove Data Transformation Remove IT
article thumbnail

The Ultimate Guide to Modern Data Quality Management (DQM) For An Effective Data Quality Control Driven by The Right Metrics

datapine

1) What Is Data Quality Management? 4) Data Quality Best Practices. 5) How Do You Measure Data Quality? 6) Data Quality Metrics Examples. 7) Data Quality Control: Use Case. 8) The Consequences Of Bad Data Quality. 9) 3 Sources Of Low-Quality Data.

article thumbnail

IKEA’s Data Transformation: Lessons from a Global Giant

Timo Elliott

At IKEA, the global home furnishings leader, data is more than an operational necessity—it’s a strategic asset. In a recent presentation at the SAPSA Impuls event in Stockholm , George Sandu, IKEA’s Master Data Leader, shared the company’s data transformation story, offering valuable lessons for organizations navigating similar challenges.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Set up alerts and orchestrate data quality rules with AWS Glue Data Quality

AWS Big Data

Alerts and notifications play a crucial role in maintaining data quality because they facilitate prompt and efficient responses to any data quality issues that may arise within a dataset. It simplifies your experience of monitoring and evaluating the quality of your data.

article thumbnail

From data lakes to insights: dbt adapter for Amazon Athena now supported in dbt Cloud

AWS Big Data

The need for streamlined data transformations As organizations increasingly adopt cloud-based data lakes and warehouses, the demand for efficient data transformation tools has grown. With dbt, teams can define data quality checks and access controls as part of their transformation workflow.

article thumbnail

Ensuring Data Transformation Results with Great Expectations

Wayne Yaddow

However, Great Expectations (GX ) sets itself apart as a robust, open-source framework that helps data teams maintain consistent and transparent data quality standards. Data quality rules are codified into structured Expectation Suites by Great Expectations instead of relying on ad-hoc scripts or manual checks.

article thumbnail

Ensuring Data Transformation Quality with dbt Core

Wayne Yaddow

How dbt Core aids data teams test, validate, and monitor complex data transformations and conversions Photo by NASA on Unsplash Introduction dbt Core, an open-source framework for developing, testing, and documenting SQL-based data transformations, has become a must-have tool for modern data teams as the complexity of data pipelines grows.

article thumbnail

Development Strategies to Prevent Data Quality Issues in Production (Part 1)

Wayne Yaddow

When implementing automated validation, AI-driven regression testing, real-time canary pipelines, synthetic data generation, freshness enforcement, KPI tracking, and CI/CD automation, organizations can shift from reactive data observability to proactive data quality assurance. Summary: Why thisorder?