Remove Data Quality Remove Data Transformation Remove Strategy
article thumbnail

The Ultimate Guide to Modern Data Quality Management (DQM) For An Effective Data Quality Control Driven by The Right Metrics

datapine

1) What Is Data Quality Management? 4) Data Quality Best Practices. 5) How Do You Measure Data Quality? 6) Data Quality Metrics Examples. 7) Data Quality Control: Use Case. 8) The Consequences Of Bad Data Quality. 9) 3 Sources Of Low-Quality Data.

article thumbnail

IKEA’s Data Transformation: Lessons from a Global Giant

Timo Elliott

At IKEA, the global home furnishings leader, data is more than an operational necessity—it’s a strategic asset. In a recent presentation at the SAPSA Impuls event in Stockholm , George Sandu, IKEA’s Master Data Leader, shared the company’s data transformation story, offering valuable lessons for organizations navigating similar challenges.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Set up alerts and orchestrate data quality rules with AWS Glue Data Quality

AWS Big Data

Alerts and notifications play a crucial role in maintaining data quality because they facilitate prompt and efficient responses to any data quality issues that may arise within a dataset. This proactive approach helps mitigate the risk of making decisions based on inaccurate information.

article thumbnail

8 data strategy mistakes to avoid

CIO Business Intelligence

Organizations can’t afford to mess up their data strategies, because too much is at stake in the digital economy. How enterprises gather, store, cleanse, access, and secure their data can be a major factor in their ability to meet corporate goals. Here are some data strategy mistakes IT leaders would be wise to avoid.

article thumbnail

Development Strategies to Prevent Data Quality Issues in Production (Part 1)

Wayne Yaddow

These strategies can prevent delayed discovery of quality issues during data observability monitoring in production. These strategies minimize risks, streamline deployment processes, and future-proof data transformations, allowing businesses to trust their data before it ever reaches production.

article thumbnail

Complex Data Transformations — Test Planning Best Practices

Wayne Yaddow

Complex Data TransformationsTest Planning Best Practices Ensuring data accuracy with structured testing and best practices Photo by Taylor Vick on Unsplash Introduction Data transformations and conversions are crucial for data pipelines, enabling organizations to process, integrate, and refine raw data into meaningful insights.

Testing 52
article thumbnail

Ensuring Data Transformation Quality with dbt Core

Wayne Yaddow

How dbt Core aids data teams test, validate, and monitor complex data transformations and conversions Photo by NASA on Unsplash Introduction dbt Core, an open-source framework for developing, testing, and documenting SQL-based data transformations, has become a must-have tool for modern data teams as the complexity of data pipelines grows.