article thumbnail

The Ultimate Guide to Modern Data Quality Management (DQM) For An Effective Data Quality Control Driven by The Right Metrics

datapine

1) What Is Data Quality Management? 4) Data Quality Best Practices. 5) How Do You Measure Data Quality? 6) Data Quality Metrics Examples. 7) Data Quality Control: Use Case. 8) The Consequences Of Bad Data Quality. 9) 3 Sources Of Low-Quality Data.

article thumbnail

Snowflake: 6 Compelling Reasons to Modernize Your Data Warehouse

Corinium

Conventional data warehouses can’t handle the volume, complexity, and variety of today’s data, and they can’t empower all your teams to access and analyze that data in real time. Focusing on data-driven decision-making instead of on administration and maintenance. So, what are you waiting for?

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Talend Data Fabric Simplifies Data Life Cycle Management

David Menninger's Analyst Perspectives

Talend is a data integration and management software company that offers applications for cloud computing, big data integration, application integration, data quality and master data management.

article thumbnail

Build Write-Audit-Publish pattern with Apache Iceberg branching and AWS Glue Data Quality

AWS Big Data

Equally crucial is the ability to segregate and audit problematic data, not just for maintaining data integrity, but also for regulatory compliance, error analysis, and potential data recovery. We discuss two common strategies to verify the quality of published data.

article thumbnail

Data quality: The key to building a modern and cost-effective data warehouse

IBM Big Data Hub

Turning raw data into improved business performance is a multilayered problem, but it doesn’t have to be complicated. To make things simpler, let’s start at the end and work backwards. Ultimately, the goal is to make better decisions during the execution of a business process.

article thumbnail

Perform data parity at scale for data modernization programs using AWS Glue Data Quality

AWS Big Data

Today, customers are embarking on data modernization programs by migrating on-premises data warehouses and data lakes to the AWS Cloud to take advantage of the scale and advanced analytical capabilities of the cloud. Some customers build custom in-house data parity frameworks to validate data during migration.

article thumbnail

Seamless integration of data lake and data warehouse using Amazon Redshift Spectrum and Amazon DataZone

AWS Big Data

Unifying these necessitates additional data processing, requiring each business unit to provision and maintain a separate data warehouse. This burdens business units focused solely on consuming the curated data for analysis and not concerned with data management tasks, cleansing, or comprehensive data processing.

Data Lake 112