This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Data Virtualization can include web process automation tools and semantic tools that help easily and reliably extract information from the web, and combine it with corporate information, to produce immediate results. How does Data Virtualization manage dataquality requirements? Prescriptiveanalytics.
Selling the value of data transformation Iyengar and his team are 18 months into a three- to five-year journey that started by building out the data layer — corralling data sources such as ERP, CRM, and legacy databases into datawarehouses for structured data and data lakes for unstructured data.
A Gartner Marketing survey found only 14% of organizations have successfully implemented a C360 solution, due to lack of consensus on what a 360-degree view means, challenges with dataquality, and lack of cross-functional governance structure for customer data.
Creating a modern data platform that is designed to support your current and future needs is critical in a data-driven organization. Business leaders need to be able to quickly access data—and to trust the accuracy of that data—to make better decisions. Easy Access with a Secure Foundation.
You may be interested to know that TechJury reports seven out of ten businesses rate data discovery as very important, and that the top three business intelligence trends are data visualization, dataquality management and self-service business intelligence.
As lakes of data become oceans, locating that which is trustworthy and reliable grows more difficult — and important. Indeed, as businesses attempt to scale AI and BI programs, small issues around dataquality can transmogrify into massive challenges. Dataquality. Data governance. Data profiling.
See recorded webinars: Emerging Practices for a Data-driven Strategy. Data and Analytics Governance: Whats Broken, and What We Need To Do To Fix It. Link Data to Business Outcomes. Does Datawarehouse as a software tool will play role in future of Data & Analytics strategy?
Revisiting the foundation: Data trust and governance in enterprise analytics Despite broad adoption of analytics tools, the impact of these platforms remains tied to dataquality and governance. times more likely to report successful analytics initiatives compared to those with ad hoc approaches.
We organize all of the trending information in your field so you don't have to. Join 42,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content