Remove Data Quality Remove Metadata Remove Publishing
article thumbnail

The state of data quality in 2020

O'Reilly on Data

We suspected that data quality was a topic brimming with interest. The responses show a surfeit of concerns around data quality and some uncertainty about how best to address those concerns. Key survey results: The C-suite is engaged with data quality. Data quality might get worse before it gets better.

article thumbnail

The Ultimate Guide to Modern Data Quality Management (DQM) For An Effective Data Quality Control Driven by The Right Metrics

datapine

1) What Is Data Quality Management? 4) Data Quality Best Practices. 5) How Do You Measure Data Quality? 6) Data Quality Metrics Examples. 7) Data Quality Control: Use Case. 8) The Consequences Of Bad Data Quality. 9) 3 Sources Of Low-Quality Data.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Data’s dark secret: Why poor quality cripples AI and growth

CIO Business Intelligence

As technology and business leaders, your strategic initiatives, from AI-powered decision-making to predictive insights and personalized experiences, are all fueled by data. Yet, despite growing investments in advanced analytics and AI, organizations continue to grapple with a persistent and often underestimated challenge: poor data quality.

article thumbnail

It’s 2025. Are your data strategies strong enough to de-risk AI adoption?

CIO Business Intelligence

If youre not keeping up the fundamentals of data and data management, your ability to adopt AIat whatever stage you are at in your AI journeywill be impacted, Kulkarni points out. This in turn stimulates a more agile and adaptable approach to AI which can accelerate its uptake and the returns that the organisation can expect.

Risk 111
article thumbnail

How ANZ Institutional Division built a federated data platform to enable their domain teams to build data products to support business outcomes

AWS Big Data

Domain ownership recognizes that the teams generating the data have the deepest understanding of it and are therefore best suited to manage, govern, and share it effectively. This principle makes sure data accountability remains close to the source, fostering higher data quality and relevance.

article thumbnail

RDF-Star: Metadata Complexity Simplified

Ontotext

Not Every Graph is a Knowledge Graph: Schemas and Semantic Metadata Matter. To be able to automate these operations and maintain sufficient data quality, enterprises have started implementing the so-called data fabrics , that employ diverse metadata sourced from different systems. Such examples are provenance (e.g.

Metadata 119
article thumbnail

Implement data quality checks on Amazon Redshift data assets and integrate with Amazon DataZone

AWS Big Data

Data quality is crucial in data pipelines because it directly impacts the validity of the business insights derived from the data. Today, many organizations use AWS Glue Data Quality to define and enforce data quality rules on their data at rest and in transit.