Remove Data Quality Remove Metrics Remove Uncertainty
article thumbnail

What you need to know about product management for AI

O'Reilly on Data

Machine learning adds uncertainty. Underneath this uncertainty lies further uncertainty in the development process itself. There are strategies for dealing with all of this uncertainty–starting with the proverb from the early days of Agile: “ do the simplest thing that could possibly work.”

article thumbnail

AI Product Management After Deployment

O'Reilly on Data

Ideally, AI PMs would steer development teams to incorporate I/O validation into the initial build of the production system, along with the instrumentation needed to monitor model accuracy and other technical performance metrics. But in practice, it is common for model I/O validation steps to be added later, when scaling an AI product.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Bridging the Gap: How ‘Data in Place’ and ‘Data in Use’ Define Complete Data Observability

DataKitchen

Bridging the Gap: How ‘Data in Place’ and ‘Data in Use’ Define Complete Data Observability In a world where 97% of data engineers report burnout and crisis mode seems to be the default setting for data teams, a Zen-like calm feels like an unattainable dream. What is Data in Use?

Testing 169
article thumbnail

Why HR professionals struggle with big data

CIO Business Intelligence

Most use master data to make daily processes more efficient and to optimize the use of existing resources. This is due, on the one hand, to the uncertainty associated with handling confidential, sensitive data and, on the other hand, to a number of structural problems.

article thumbnail

Data Teams and Their Types of Data Journeys

DataKitchen

Data Journeys track and monitor all levels of the data stack, from data to tools to code to tests across all critical dimensions. A Data Journey supplies real-time statuses and alerts on start times, processing durations, test results, and infrastructure events, among other metrics.

article thumbnail

Human-centered design and data-driven insights elevate precision in government IT modernization

IBM Big Data Hub

Government executives face several uncertainties as they embark on their journeys of modernization. The pain point tracker clusters the foundational data in which value metrics are then applied. and quality (how does this impact service delivery, business process and data quality?).

article thumbnail

Product Management for AI

Domino Data Lab

Companies with successful ML projects are often companies that already have an experimental culture in place as well as analytics that enable them to learn from data. Ensure that product managers work on projects that matter to the business and/or are aligned to strategic company metrics. That’s another pattern.