article thumbnail

The state of data quality in 2020

O'Reilly on Data

We suspected that data quality was a topic brimming with interest. The responses show a surfeit of concerns around data quality and some uncertainty about how best to address those concerns. Key survey results: The C-suite is engaged with data quality. Data quality might get worse before it gets better.

article thumbnail

The Ultimate Guide to Modern Data Quality Management (DQM) For An Effective Data Quality Control Driven by The Right Metrics

datapine

1) What Is Data Quality Management? 4) Data Quality Best Practices. 5) How Do You Measure Data Quality? 6) Data Quality Metrics Examples. 7) Data Quality Control: Use Case. 8) The Consequences Of Bad Data Quality. 9) 3 Sources Of Low-Quality Data.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Drug Launch Case Study: Amazing Efficiency Using DataOps

DataKitchen

data engineers delivered over 100 lines of code and 1.5 data quality tests every day to support a cast of analysts and customers. The team used DataKitchen’s DataOps Automation Software, which provided one place to collaborate and orchestrate source code, data quality, and deliver features into production.

article thumbnail

Data Quality Is Free

Anmut

They made us realise that building systems, processes and procedures to ensure quality is built in at the outset is far more cost effective than correcting mistakes once made. How about data quality? Redman and David Sammon, propose an interesting (and simple) exercise to measure data quality.

article thumbnail

Supply Chain Planning Maturity – How Do You Compare to Peers?

This newly published research report addresses this question, covering: Perceptions on planning effectiveness: Find out how supply chain professionals rate the effectiveness of their planning process, who is involved, and what they are doing to improve the planning practice.

article thumbnail

Unit Test framework and Test Driven Development (TDD) in Python

Analytics Vidhya

This article was published as a part of the Data Science Blogathon Overview Running data projects takes a lot of time. Poor data results in poor judgments. Running unit tests in data science and data engineering projects assures data quality. You know your code does what you want it to do.

Testing 341
article thumbnail

Data’s dark secret: Why poor quality cripples AI and growth

CIO Business Intelligence

As technology and business leaders, your strategic initiatives, from AI-powered decision-making to predictive insights and personalized experiences, are all fueled by data. Yet, despite growing investments in advanced analytics and AI, organizations continue to grapple with a persistent and often underestimated challenge: poor data quality.