Remove Data Quality Remove Structured Data Remove Unstructured Data
article thumbnail

Unbundling the Graph in GraphRAG

O'Reilly on Data

Entity resolution merges the entities which appear consistently across two or more structured data sources, while preserving evidence decisions. A generalized, unbundled workflow A more accountable approach to GraphRAG is to unbundle the process of knowledge graph construction, paying special attention to data quality.

article thumbnail

Beyond the hype: Do you really need an LLM for your data?

CIO Business Intelligence

They promise to revolutionize how we interact with data, generating human-quality text, understanding natural language and transforming data in ways we never thought possible. From automating tedious tasks to unlocking insights from unstructured data, the potential seems limitless.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

The Rise of Unstructured Data

Cloudera

Here we mostly focus on structured vs unstructured data. In terms of representation, data can be broadly classified into two types: structured and unstructured. Structured data can be defined as data that can be stored in relational databases, and unstructured data as everything else.

article thumbnail

Data governance in the age of generative AI

AWS Big Data

First, many LLM use cases rely on enterprise knowledge that needs to be drawn from unstructured data such as documents, transcripts, and images, in addition to structured data from data warehouses. As part of the transformation, the objects need to be treated to ensure data privacy (for example, PII redaction).

article thumbnail

Get your data AI-ready

CIO Business Intelligence

Organizational data is diverse, massive in size, and exists in multiple formats (paper, images, audio, video, emails, and other types of unstructured data, as well as structured data) sprawled across locations and silos. Every AI journey begins with the right data foundation—arguably the most challenging step.

article thumbnail

8 data strategy mistakes to avoid

CIO Business Intelligence

“Similar to disaster recovery, business continuity, and information security, data strategy needs to be well thought out and defined to inform the rest, while providing a foundation from which to build a strong business.” Overlooking these data resources is a big mistake. What are the goals for leveraging unstructured data?”

article thumbnail

Building a Beautiful Data Lakehouse

CIO Business Intelligence

Newer data lakes are highly scalable and can ingest structured and semi-structured data along with unstructured data like text, images, video, and audio. They conveniently store data in a flat architecture that can be queried in aggregate and offer the speed and lower cost required for big data analytics.

Data Lake 119