Remove Data Science Remove Data-driven Remove Experimentation
article thumbnail

Practical Skills for The AI Product Manager

O'Reilly on Data

AI PMs should enter feature development and experimentation phases only after deciding what problem they want to solve as precisely as possible, and placing the problem into one of these categories. Experimentation: It’s just not possible to create a product by building, evaluating, and deploying a single model.

article thumbnail

The key to operational AI: Modern data architecture

CIO Business Intelligence

From customer service chatbots to marketing teams analyzing call center data, the majority of enterprises—about 90% according to recent data —have begun exploring AI. For companies investing in data science, realizing the return on these investments requires embedding AI deeply into business processes.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

How EUROGATE established a data mesh architecture using Amazon DataZone

AWS Big Data

For container terminal operators, data-driven decision-making and efficient data sharing are vital to optimizing operations and boosting supply chain efficiency. Together, these capabilities enable terminal operators to enhance efficiency and competitiveness in an industry that is increasingly data driven.

IoT 110
article thumbnail

Business Strategies for Deploying Disruptive Tech: Generative AI and ChatGPT

Rocket-Powered Data Science

Third, any commitment to a disruptive technology (including data-intensive and AI implementations) must start with a business strategy. These changes may include requirements drift, data drift, model drift, or concept drift. encouraging and rewarding) a culture of experimentation across the organization.

Strategy 290
article thumbnail

MLOps and DevOps: Why Data Makes It Different

O'Reilly on Data

As with many burgeoning fields and disciplines, we don’t yet have a shared canonical infrastructure stack or best practices for developing and deploying data-intensive applications. Why: Data Makes It Different. Not only is data larger, but models—deep learning models in particular—are much larger than before.

IT 364
article thumbnail

Top 10 Data Innovation Trends During 2020

Rocket-Powered Data Science

In at least one way, it was not different, and that was in the continued development of innovations that are inspired by data. This steady march of data-driven innovation has been a consistent characteristic of each year for at least the past decade.

article thumbnail

Where CIOs should place their 2025 AI bets

CIO Business Intelligence

Whereas robotic process automation (RPA) aims to automate tasks and improve process orchestration, AI agents backed by the companys proprietary data may rewire workflows, scale operations, and improve contextually specific decision-making.