Remove Data Science Remove Data Warehouse Remove Metadata
article thumbnail

Data Warehouses: Basic Concepts for data enthusiasts

Analytics Vidhya

This article was published as a part of the Data Science Blogathon. Introduction The purpose of a data warehouse is to combine multiple sources to generate different insights that help companies make better decisions and forecasting. It consists of historical and commutative data from single or multiple sources.

article thumbnail

Enriching metadata for accurate text-to-SQL generation for Amazon Athena

AWS Big Data

Enterprise data is brought into data lakes and data warehouses to carry out analytical, reporting, and data science use cases using AWS analytical services like Amazon Athena , Amazon Redshift , Amazon EMR , and so on. Table metadata is fetched from AWS Glue. The generated Athena SQL query is run.

Metadata 105
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

SAP Datasphere Powers Business at the Speed of Data

Rocket-Powered Data Science

Data collections are the ones and zeroes that encode the actionable insights (patterns, trends, relationships) that we seek to extract from our data through machine learning and data science. This is where SAP Datasphere (the next generation of SAP Data Warehouse Cloud) comes in.

article thumbnail

How EUROGATE established a data mesh architecture using Amazon DataZone

AWS Big Data

For container terminal operators, data-driven decision-making and efficient data sharing are vital to optimizing operations and boosting supply chain efficiency. Two use cases illustrate how this can be applied for business intelligence (BI) and data science applications, using AWS services such as Amazon Redshift and Amazon SageMaker.

IoT 111
article thumbnail

Accelerate SQL code migration from Google BigQuery to Amazon Redshift using BladeBridge

AWS Big Data

BladeBridge offers a comprehensive suite of tools that automate much of the complex conversion work, allowing organizations to quickly and reliably transition their data analytics capabilities to the scalable Amazon Redshift data warehouse. times better price performance than other cloud data warehouses.

article thumbnail

What Is a Metadata Management Tool?

Octopai

What enables you to use all those gigabytes and terabytes of data you’ve collected? Metadata is the pertinent, practical details about data assets: what they are, what to use them for, what to use them with. Without metadata, data is just a heap of numbers and letters collecting dust. Where does metadata come from?

article thumbnail

The next generation of Amazon SageMaker: The center for all your data, analytics, and AI

AWS Big Data

Amazon SageMaker Lakehouse , now generally available, unifies all your data across Amazon Simple Storage Service (Amazon S3) data lakes and Amazon Redshift data warehouses, helping you build powerful analytics and AI/ML applications on a single copy of data. Having confidence in your data is key.