Remove Data Science Remove Forecasting Remove Prescriptive Analytics
article thumbnail

Top 10 Analytics And Business Intelligence Trends For 2020

datapine

You simply choose the data source you want to analyze and the column/variable (for instance, revenue) that the algorithm should focus on. Then, calculations will be run and come back to you with growth/trends/forecast, value driver, key segments correlations, anomalies, and what-if analysis. How can we make it happen?

article thumbnail

Analytics Insights and Careers at the Speed of Data

Rocket-Powered Data Science

Focus on the technologies and engineering components: e.g., sensors, monitoring, cloud-to-edge, microservices, serverless, insights-as-a-service APIs, IFTTT (IF-This-Then-That) architectures.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Editorial Review of “Building Industrial Digital Twins”

Rocket-Powered Data Science

The digital twin is more than a data collector. It is an insight engine, providing not only data for descriptive and diagnostic analytics applications, but also providing essential data for predictive and prescriptive analytics applications. 4) The DT Canvas (chapter 4)! 6) Specific Industry 4.0

article thumbnail

Top 10 Analytics And Business Intelligence Buzzwords For 2020

datapine

Predictive & Prescriptive Analytics. Predictive Analytics: What could happen? We mentioned predictive analytics in our business intelligence trends article and we will stress it here as well since we find it extremely important for 2020. Prescriptive Analytics: What should we do? Cognitive Computing.

article thumbnail

Three Types of Actionable Business Analytics Not Called Predictive or Prescriptive

Rocket-Powered Data Science

Decades (at least) of business analytics writings have focused on the power, perspicacity, value, and validity in deploying predictive and prescriptive analytics for business forecasting and optimization, respectively. How do predictive and prescriptive analytics fit into this statistical framework?

article thumbnail

Data science vs data analytics: Unpacking the differences

IBM Big Data Hub

Though you may encounter the terms “data science” and “data analytics” being used interchangeably in conversations or online, they refer to two distinctly different concepts. Meanwhile, data analytics is the act of examining datasets to extract value and find answers to specific questions.

article thumbnail

What is data analytics? Analyzing and managing data for decisions

CIO Business Intelligence

More specifically: Descriptive analytics uses historical and current data from multiple sources to describe the present state, or a specified historical state, by identifying trends and patterns. Predictive analytics is often considered a type of “advanced analytics,” and frequently depends on machine learning and/or deep learning.