Remove Data Science Remove Knowledge Discovery Remove Statistics
article thumbnail

KDD 2020 Opens Call for Papers

Data Science 101

This weeks guest post comes from KDD (Knowledge Discovery and Data Mining). Every year they host an excellent and influential conference focusing on many areas of data science. Honestly, KDD has been promoting data science way before data science was even cool. 1989 to be exact.

KDD 81
article thumbnail

Fundamentals of Data Mining

Data Science 101

This data alone does not make any sense unless it’s identified to be related in some pattern. Data mining is the process of discovering these patterns among the data and is therefore also known as Knowledge Discovery from Data (KDD). You might be wondering what benefit you can get out of these techniques?

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

How Do Super Rookies Start Learning Data Analysis?

FineReport

For super rookies, the first task is to understand what data analysis is. Data analysis is a type of knowledge discovery that gains insights from data and drives business decisions. One is how to gain insights from the data. Data is cold and can’t speak. From Google. There are two points here.

article thumbnail

Performing Non-Compartmental Analysis with Julia and Pumas AI

Domino Data Lab

This tutorial will show how easy it is to integrate and use Pumas in the Domino Data Science Platform , and we will carry out a simple non-compartmental analysis using a freely available dataset. The Domino data science platform empowers data scientists to develop and deliver models with open access to the tools they love.

Metrics 59
article thumbnail

Changing assignment weights with time-based confounders

The Unofficial Google Data Science Blog

For example, imagine a fantasy football site is considering displaying advanced player statistics. A ramp-up strategy may mitigate the risk of upsetting the site’s loyal users who perhaps have strong preferences for the current statistics that are shown. One reason to do ramp-up is to mitigate the risk of never before seen arms.

article thumbnail

Accelerating model velocity through Snowflake Java UDF integration

Domino Data Lab

These companies often undertake large data science efforts in order to shift from “data-driven” to “model-driven” operations, and to provide model-underpinned insights to the business. The typical data science journey for a company starts with a small team that is tasked with a handful of specific problems.

article thumbnail

Variance and significance in large-scale online services

The Unofficial Google Data Science Blog

by AMIR NAJMI Running live experiments on large-scale online services (LSOS) is an important aspect of data science. Because individual observations have so little information, statistical significance remains important to assess. We must therefore maintain statistical rigor in quantifying experimental uncertainty.