Remove Data Science Remove Measurement Remove Uncertainty
article thumbnail

What are Joint, Marginal, and Conditional Probability?

Analytics Vidhya

Probability is a cornerstone of statistics and data science, providing a framework to quantify uncertainty and make predictions. Probability measures the likelihood of an event […] The post What are Joint, Marginal, and Conditional Probability? What is Probability?

article thumbnail

Systems Thinking and Data Science: a partnership or a competition?

Jen Stirrup

How can systems thinking and data science solve digital transformation problems? Understandably, organizations focus on the data and the technology since data retrieval is often viewed as a data problem. However, the thrust here is not to diminish data science or data engineering.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Business Strategies for Deploying Disruptive Tech: Generative AI and ChatGPT

Rocket-Powered Data Science

Those F’s are: Fragility, Friction, and FUD (Fear, Uncertainty, Doubt). These changes may include requirements drift, data drift, model drift, or concept drift. Here are my 10 rules ( i.e., Business Strategies for Deploying Disruptive Data-Intensive, AI, and ChatGPT Implementations): Honor business value above all other goals.

Strategy 290
article thumbnail

Humans-in-the-loop forecasting: integrating data science and business planning

The Unofficial Google Data Science Blog

by THOMAS OLAVSON Thomas leads a team at Google called "Operations Data Science" that helps Google scale its infrastructure capacity optimally. This classification is based on the purpose, horizon, update frequency and uncertainty of the forecast. Our team does a lot of forecasting.

article thumbnail

Regulatory uncertainty overshadows gen AI despite pace of adoption

CIO Business Intelligence

It’s no surprise, then, that according to a June KPMG survey, uncertainty about the regulatory environment was the top barrier to implementing gen AI. So here are some of the strategies organizations are using to deploy gen AI in the face of regulatory uncertainty. How was this data obtained? AI is a black box.

article thumbnail

Uncertainties: Statistical, Representational, Interventional

The Unofficial Google Data Science Blog

by AMIR NAJMI & MUKUND SUNDARARAJAN Data science is about decision making under uncertainty. Some of that uncertainty is the result of statistical inference, i.e., using a finite sample of observations for estimation. But there are other kinds of uncertainty, at least as important, that are not statistical in nature.

article thumbnail

AI Product Management After Deployment

O'Reilly on Data

Therefore, the PM should consider the team that will reconvene whenever it is necessary to build out or modify product features that: ensure that inputs are present and complete, establish that inputs are from a realistic (expected) distribution of the data, and trigger alarms, model retraining, or shutdowns (when necessary).