Remove Data Science Remove Modeling Remove Prescriptive Analytics
article thumbnail

Analytics Insights and Careers at the Speed of Data

Rocket-Powered Data Science

Focus on the technologies and engineering components: e.g., sensors, monitoring, cloud-to-edge, microservices, serverless, insights-as-a-service APIs, IFTTT (IF-This-Then-That) architectures.

article thumbnail

Editorial Review of “Building Industrial Digital Twins”

Rocket-Powered Data Science

It is an insight engine, providing not only data for descriptive and diagnostic analytics applications, but also providing essential data for predictive and prescriptive analytics applications.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Data science vs data analytics: Unpacking the differences

IBM Big Data Hub

Though you may encounter the terms “data science” and “data analytics” being used interchangeably in conversations or online, they refer to two distinctly different concepts. Meanwhile, data analytics is the act of examining datasets to extract value and find answers to specific questions.

article thumbnail

Business Intelligence vs Data Science vs Data Analytics

FineReport

Good data can give you keen insights, convincing evidence to make informed decisions. By observing and analyzing data, we can develop more accurate theories and formulate more effective solutions. For this reason, data science and/vs. Definition: BI vs Data Science vs Data Analytics.

article thumbnail

The Power of Graph Databases, Linked Data, and Graph Algorithms

Rocket-Powered Data Science

And this: perhaps the most powerful node in a graph model for real-world use cases might be “context”. How does one express “context” in a data model? Hence, the graph model can be applied productively and effectively in numerous network analysis use cases. Ahh, that’s the topic for another article.

Metadata 250
article thumbnail

Delivering Low-latency Analytics Products for Business Success

Rocket-Powered Data Science

The results showed that (among those surveyed) approximately 90% of enterprise analytics applications are being built on tabular data. The ease with which such structured data can be stored, understood, indexed, searched, accessed, and incorporated into business models could explain this high percentage.

Analytics 166
article thumbnail

What is data analytics? Analyzing and managing data for decisions

CIO Business Intelligence

Data analytics draws from a range of disciplines — including computer programming, mathematics, and statistics — to perform analysis on data in an effort to describe, predict, and improve performance. What are the four types of data analytics? For example, how might social media spending affect sales?