Remove Data Strategy Remove Forecasting Remove Predictive Modeling
article thumbnail

Beyond the hype: Do you really need an LLM for your data?

CIO Business Intelligence

As someone deeply involved in shaping data strategy, governance and analytics for organizations, Im constantly working on everything from defining data vision to building high-performing data teams. My work centers around enabling businesses to leverage data for better decision-making and driving impactful change.

article thumbnail

How Can BI Consulting Services Help Foster Data-driven Decisions

BizAcuity

Business intelligence consulting services offer expertise and guidance to help organizations harness data effectively. Beyond mere data collection, BI consulting helps businesses create a cohesive data strategy that aligns with organizational goals.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Solving the Data Daze – Analytics at the Speed of Business Questions

Rocket-Powered Data Science

Beyond the early days of data collection, where data was acquired primarily to measure what had happened (descriptive) or why something is happening (diagnostic), data collection now drives predictive models (forecasting the future) and prescriptive models (optimizing for “a better future”).

Analytics 167
article thumbnail

CDOs: Your AI is smart, but your ESG is dumb. Here’s how to fix it

CIO Business Intelligence

However, embedding ESG into an enterprise data strategy doesnt have to start as a C-suite directive. Developers, data architects and data engineers can initiate change at the grassroots level from integrating sustainability metrics into data models to ensuring ESG data integrity and fostering collaboration with sustainability teams.

IT 59
article thumbnail

Why Analytics Are Essential in Times of Crisis

Sisense

Predict: Lastly, look to forecast trends in supply and demand and track fast-moving changes in leading indicators. To foster the art of the possible, below are examples of how regular businesses use analytics to maximize customer revenue, reduce costs, forecast outcomes, and drive efficiency. Insights over instinct.

article thumbnail

Three Types of Actionable Business Analytics Not Called Predictive or Prescriptive

Rocket-Powered Data Science

Decades (at least) of business analytics writings have focused on the power, perspicacity, value, and validity in deploying predictive and prescriptive analytics for business forecasting and optimization, respectively. Broken models are definitely disruptive to analytics applications and business operations.

article thumbnail

How Skullcandy Uses Predictive and Sentiment Analysis to Understand Customers

Sisense

We fed Kraken (BigSquid’s predictive analytics engine) information about historical warranty costs, claims, forecasts, historical product attributes, and attributes of the new products on the roadmap. Then we ran Kraken’s machine learning and predictive modeling engine to get the results. Lessons Learned. Be patient!