This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
We live in a data-rich, insights-rich, and content-rich world. Data collections are the ones and zeroes that encode the actionable insights (patterns, trends, relationships) that we seek to extract from our data through machine learning and data science. Plus, AI can also help find key insights encoded in data.
1) What Is Data Quality Management? 4) Data Quality Best Practices. 5) How Do You Measure Data Quality? 6) Data Quality Metrics Examples. 7) Data Quality Control: Use Case. 8) The Consequences Of Bad Data Quality. 9) 3 Sources Of Low-Quality Data. 10) Data Quality Solutions: Key Attributes.
Data is the foundation of innovation, agility and competitive advantage in todays digital economy. As technology and business leaders, your strategic initiatives, from AI-powered decision-making to predictive insights and personalized experiences, are all fueled by data. Data quality is no longer a back-office concern.
For container terminal operators, data-driven decision-making and efficient data sharing are vital to optimizing operations and boosting supply chain efficiency. Together, these capabilities enable terminal operators to enhance efficiency and competitiveness in an industry that is increasingly datadriven.
In today’s rapidly evolving financial landscape, data is the bedrock of innovation, enhancing customer and employee experiences and securing a competitive edge. Like many large financial institutions, ANZ Institutional Division operated with siloed data practices and centralized data management teams.
The Airflow REST API facilitates a wide range of use cases, from centralizing and automating administrative tasks to building event-driven, data-aware data pipelines. Event-driven architectures – The enhanced API facilitates seamless integration with external events, enabling the triggering of Airflow DAGs based on these events.
Amazon DataZone now launched authentication supports through the Amazon Athena JDBC driver, allowing data users to seamlessly query their subscribed data lake assets via popular business intelligence (BI) and analytics tools like Tableau, Power BI, Excel, SQL Workbench, DBeaver, and more.
Data lineage is the journey data takes from its creation through its transformations over time. Tracing the source of data is an arduous task. With all these diverse data sources, and if systems are integrated, it is difficult to understand the complicated data web they form much less get a simple visual flow.
Selecting the strategies and tools for validating datatransformations and data conversions in your data pipelines. Introduction Datatransformations and data conversions are crucial to ensure that raw data is organized, processed, and ready for useful analysis.
Organizations with legacy, on-premises, near-real-time analytics solutions typically rely on self-managed relational databases as their data store for analytics workloads. Near-real-time streaming analytics captures the value of operational data and metrics to provide new insights to create business opportunities.
Collecting and using data to make informed decisions is the new foundation for businesses. The key term here is usable : Anyone can be data rich, and collect vast troves of data. This is where metadata, or the data about data, comes into play. What is a Metadata Management Framework?
In addition to using native managed AWS services that BMS didn’t need to worry about upgrading, BMS was looking to offer an ETL service to non-technical business users that could visually compose datatransformation workflows and seamlessly run them on the AWS Glue Apache Spark-based serverless data integration engine.
How dbt Core aids data teams test, validate, and monitor complex datatransformations and conversions Photo by NASA on Unsplash Introduction dbt Core, an open-source framework for developing, testing, and documenting SQL-based datatransformations, has become a must-have tool for modern data teams as the complexity of data pipelines grows.
Replace manual and recurring tasks for fast, reliable data lineage and overall data governance. It’s paramount that organizations understand the benefits of automating end-to-end data lineage. The importance of end-to-end data lineage is widely understood and ignoring it is risky business. Doing Data Lineage Right.
The need to integrate diverse data sources has grown exponentially, but there are several common challenges when integrating and analyzing data from multiple sources, services, and applications. First, you need to create and maintain independent connections to the same data source for different services.
When global technology company Lenovo started utilizing data analytics, they helped identify a new market niche for its gaming laptops, and powered remote diagnostics so their customers got the most from their servers and other devices.
In the final part of this three-part series, we’ll explore ho w data mesh bolsters performance and helps organizations and data teams work more effectively. Usually, organizations will combine different domain topologies, depending on the trade-offs, and choose to focus on specific aspects of data mesh.
Modern data governance is a strategic, ongoing and collaborative practice that enables organizations to discover and track their data, understand what it means within a business context, and maximize its security, quality and value. The What: Data Governance Defined. Data governance has no standard definition.
It seamlessly consolidates data from various data sources within AWS, including AWS Cost Explorer (and forecasting with Cost Explorer ), AWS Trusted Advisor , and AWS Compute Optimizer. Overview of the BMW Cloud Data Hub At the BMW Group, Cloud Data Hub (CDH) is the central platform for managing company-wide data and data solutions.
Manufacturers have long held a data-driven vision for the future of their industry. It’s one where near real-time data flows seamlessly between IT and operational technology (OT) systems. Legacy data management is holding back manufacturing transformation Until now, however, this vision has remained out of reach.
Today’s best-performing organizations embrace data for strategic decision-making. Because of the criticality of the data they deal with, we think that finance teams should lead the enterprise adoption of data and analytics solutions. This is because accurate data is “table stakes” for finance teams.
We are excited to announce the general availability of Apache Iceberg in Cloudera Data Platform (CDP). These tools empower analysts and data scientists to easily collaborate on the same data, with their choice of tools and analytic engines. Why integrate Apache Iceberg with Cloudera Data Platform?
Modak, a leading provider of modern data engineering solutions, is now a certified solution partner with Cloudera. Customers can now seamlessly automate migration to Cloudera’s Hybrid Data Platform — Cloudera Data Platform (CDP) to dynamically auto-scale cloud services with Cloudera Data Engineering (CDE) integration with Modak Nabu.
dbt allows data teams to produce trusted data sets for reporting, ML modeling, and operational workflows using SQL, with a simple workflow that follows software engineering best practices like modularity, portability, and continuous integration/continuous development (CI/CD). The Open Data Lakehouse . Introduction.
This is a guest post co-written by Alex Naumov, Principal Data Architect at smava. smava believes in and takes advantage of data-driven decisions in order to become the market leader. smava believes in and takes advantage of data-driven decisions in order to become the market leader.
Under the Transparency in Coverage (TCR) rule , hospitals and payors to publish their pricing data in a machine-readable format. The data in the machine-readable files can provide valuable insights to understand the true cost of healthcare services and compare prices and quality across hospitals.
Data mesh is a new approach to data management. Companies across industries are using a data mesh to decentralize data management to improve data agility and get value from data. This is especially true in a large enterprise with thousands of data products.
To build a data-driven business, it is important to democratize enterprise data assets in a data catalog. With a unified data catalog, you can quickly search datasets and figure out data schema, data format, and location. For metadata read/write, Flink has the catalog interface.
Organizations have spent a lot of time and money trying to harmonize data across diverse platforms , including cleansing, uploading metadata, converting code, defining business glossaries, tracking datatransformations and so on. So questions linger about whether transformeddata can be trusted.
With data becoming the driving force behind many industries today, having a modern data architecture is pivotal for organizations to be successful. In this post, we describe Orca’s journey building a transactional data lake using Amazon Simple Storage Service (Amazon S3), Apache Iceberg, and AWS Analytics.
What Is Data Governance In The Public Sector? Effective data governance for the public sector enables entities to ensure data quality, enhance security, protect privacy, and meet compliance requirements. With so much focus on compliance, democratizing data for self-service analytics can present a challenge.
Although Jira Cloud provides reporting capability, loading this data into a data lake will facilitate enrichment with other business data, as well as support the use of business intelligence (BI) tools and artificial intelligence (AI) and machine learning (ML) applications.
In today’s data-centric world, organizations often tout data as their most valuable asset. However, many struggle to maintain reliable, trustworthy data amidst complex, evolving environments. This challenge is especially critical for executives responsible for data strategy and operations.
We just announced the general availability of Cloudera DataFlow Designer , bringing self-service data flow development to all CDP Public Cloud customers. In this blog post we will put these capabilities in context and dive deeper into how the built-in, end-to-end data flow life cycle enables self-service data pipeline development.
Data flow lineage is crucial for anyone handling data within organizations. In essence, data flow lineage is indispensable for ensuring transparency, maintaining data quality, achieving compliance, enabling efficient troubleshooting, conducting impact analysis, and enhancing collaboration within organizations.
Data platform architecture has an interesting history. A read-optimized platform that can integrate data from multiple applications emerged. In another decade, the internet and mobile started the generate data of unforeseen volume, variety and velocity. It required a different data platform solution. It is too expensive.
Data people face a challenge. They must put high-quality data into the hands of users as efficiently as possible. As the latest iteration in this pursuit of high-quality data sharing, DataOps combines a range of disciplines. It synthesizes all we’ve learned about agile, data quality , and ETL/ELT.
Infomedia Ltd (ASX:IFM) is a leading global provider of DaaS and SaaS solutions that empowers the data-driven automotive ecosystem. In this post, we share how Infomedia built a serverless data pipeline with change data capture (CDC) using AWS Glue and Apache Hudi.
For example, GPS, social media, cell phone handoffs are modeled as graphs while data catalogs, data lineage and MDM tools leverage knowledge graphs for linking metadata with semantics. Both nodes and edges have associated properties modeled as key-values with primitive data types and are single-valued.
This allows you to simplify security and governance over transactional data lakes by providing access controls at table-, column-, and row-level permissions with your Apache Spark jobs. Many large enterprise companies seek to use their transactional data lake to gain insights and improve decision-making.
Chances are, you’ve heard of the term “modern data stack” before. In this article, I will explain the modern data stack in detail, list some benefits, and discuss what the future holds. What Is the Modern Data Stack? It is known to have benefits in handling data due to its robustness, speed, and scalability.
In the era of data, organizations are increasingly using data lakes to store and analyze vast amounts of structured and unstructured data. Data lakes provide a centralized repository for data from various sources, enabling organizations to unlock valuable insights and drive data-driven decision-making.
The quick and dirty definition of data mapping is the process of connecting different types of data from various data sources. Data mapping is a crucial step in data modeling and can help organizations achieve their business goals by enabling data integration, migration, transformation, and quality.
By leveraging data analysis to solve high-value business problems, they will become more efficient. This is in contrast to traditional BI, which extracts insight from data outside of the app. that gathers data from many sources. These tools prep that data for analysis and then provide reporting on it from a central viewpoint.
We organize all of the trending information in your field so you don't have to. Join 42,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content