This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Modak, a leading provider of modern data engineering solutions, is now a certified solution partner with Cloudera. Customers can now seamlessly automate migration to Cloudera’s Hybrid Data Platform — Cloudera Data Platform (CDP) to dynamically auto-scale cloud services with Cloudera Data Engineering (CDE) integration with Modak Nabu.
This is a guest post co-written by Alex Naumov, Principal Data Architect at smava. smava believes in and takes advantage of data-driven decisions in order to become the market leader. smava believes in and takes advantage of data-driven decisions in order to become the market leader.
In today’s data-driven world, seamless integration and transformation of data across diverse sources into actionable insights is paramount. With AWS Glue, you can discover and connect to hundreds of diverse data sources and manage your data in a centralized data catalog.
A data pipeline is a series of processes that move raw data from one or more sources to one or more destinations, often transforming and processing the data along the way. This can include tasks such as data ingestion, cleansing, filtering, aggregation, or standardization.
The quick and dirty definition of data mapping is the process of connecting different types of data from various data sources. Data mapping is a crucial step in data modeling and can help organizations achieve their business goals by enabling data integration, migration, transformation, and quality.
By leveraging data analysis to solve high-value business problems, they will become more efficient. This is in contrast to traditional BI, which extracts insight from data outside of the app. that gathers data from many sources. These tools prep that data for analysis and then provide reporting on it from a central viewpoint.
When extracting your financial and operationalreportingdata from a cloud ERP, your enterprise organization needs accurate, cost-efficient, user-friendly insights into that data. While real-time extraction is historically faster, your team needs the reliability of the replication process for your cloud data extraction.
This untapped potential suggests a significant opportunity for those willing to embrace AI and gain a competitive edge through intelligent automation and data-driven financial insights. However, to truly unlock this potential, complete data preparation and control are essential.
In the dynamic field of Business Intelligence (BI) , stability and consistency are paramount for accurate and reliable data analysis. Imagine trying to analyze data with a constantly changing backend—it’s like kicking the legs out from underneath a table and still expecting it to stay upright.
In the rapidly-evolving world of embedded analytics and business intelligence, one important question has emerged at the forefront: How can you leverage artificial intelligence (AI) to enhance your data analysis? Users can ask specific questions about the data; for example, asking what a particular data value was on a particular date.
In the rapidly evolving world of embedded analytics and business intelligence, one important question has emerged at the forefront: How can you leverage artificial intelligence (AI) to enhance your data analysis? Users can ask specific questions about the data; for example, asking what a particular data value was on a particular date.
We organize all of the trending information in your field so you don't have to. Join 42,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content