Remove Data Transformation Remove Data Warehouse Remove Finance
article thumbnail

SAP Datasphere Powers Business at the Speed of Data

Rocket-Powered Data Science

In fact, by putting a single label like AI on all the steps of a data-driven business process, we have effectively not only blurred the process, but we have also blurred the particular characteristics that make each step separately distinct, uniquely critical, and ultimately dependent on specialized, specific technologies at each step.

article thumbnail

Accelerate your data workflows with Amazon Redshift Data API persistent sessions

AWS Big Data

Amazon Redshift is a fast, scalable, secure, and fully managed cloud data warehouse that you can use to analyze your data at scale. He brings extensive experience on Software Development, Architecture and Analytics from industries like finance, telecom, retail and healthcare.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Database vs. Data Warehouse: What’s the Difference?

Jet Global

Whether the reporting is being done by an end user, a data science team, or an AI algorithm, the future of your business depends on your ability to use data to drive better quality for your customers at a lower cost. So, when it comes to collecting, storing, and analyzing data, what is the right choice for your enterprise?

article thumbnail

Straumann Group is transforming dentistry with data, AI

CIO Business Intelligence

“Digitizing was our first stake at the table in our data journey,” he says. That step, primarily undertaken by developers and data architects, established data governance and data integration. That step, primarily undertaken by developers and data architects, established data governance and data integration.

article thumbnail

Data’s dark secret: Why poor quality cripples AI and growth

CIO Business Intelligence

As data volumes and use cases scale especially with AI and real-time analytics trust must be an architectural principle, not an afterthought. Comparison of modern data architectures : Architecture Definition Strengths Weaknesses Best used when Data warehouse Centralized, structured and curated data repository.

article thumbnail

How smava makes loans transparent and affordable using Amazon Redshift Serverless

AWS Big Data

To speed up the self-service analytics and foster innovation based on data, a solution was needed to provide ways to allow any team to create data products on their own in a decentralized manner. To create and manage the data products, smava uses Amazon Redshift , a cloud data warehouse.

Data Lake 115
article thumbnail

BMW Cloud Efficiency Analytics powered by Amazon QuickSight and Amazon Athena

AWS Big Data

The difference lies in when and where data transformation takes place. In ETL, data is transformed before it’s loaded into the data warehouse. In ELT, raw data is loaded into the data warehouse first, then it’s transformed directly within the warehouse.