Remove Data Transformation Remove Data Warehouse Remove IT
article thumbnail

MLOps and DevOps: Why Data Makes It Different

O'Reilly on Data

Why: Data Makes It Different. In contrast, a defining feature of ML-powered applications is that they are directly exposed to a large amount of messy, real-world data which is too complex to be understood and modeled by hand. However, the concept is quite abstract. Can’t we just fold it into existing DevOps best practices?

IT 363
article thumbnail

SAP Datasphere Powers Business at the Speed of Data

Rocket-Powered Data Science

This is where we dispel an old “big data” notion (heard a decade ago) that was expressed like this: “we need our data to run at the speed of business.” Instead, what we really need is for our business to run at the speed of data. This is where SAP Datasphere (the next generation of SAP Data Warehouse Cloud) comes in.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

From data lakes to insights: dbt adapter for Amazon Athena now supported in dbt Cloud

AWS Big Data

The need for streamlined data transformations As organizations increasingly adopt cloud-based data lakes and warehouses, the demand for efficient data transformation tools has grown. Using Athena and the dbt adapter, you can transform raw data in Amazon S3 into well-structured tables suitable for analytics.

article thumbnail

Unlocking near real-time analytics with petabytes of transaction data using Amazon Aurora Zero-ETL integration with Amazon Redshift and dbt Cloud

AWS Big Data

While customers can perform some basic analysis within their operational or transactional databases, many still need to build custom data pipelines that use batch or streaming jobs to extract, transform, and load (ETL) data into their data warehouse for more comprehensive analysis.

article thumbnail

Database vs. Data Warehouse: What’s the Difference?

Jet Global

The success of any business into the next year and beyond will depend entirely on the volume, accuracy, and reportability of the data they collect—and how well the business can analyze, extract insight from, and take action on that data. All About That (Data)Base. Enter the Warehouse.

article thumbnail

Accelerate your data workflows with Amazon Redshift Data API persistent sessions

AWS Big Data

Amazon Redshift is a fast, scalable, secure, and fully managed cloud data warehouse that you can use to analyze your data at scale. Redshift Data API provides a secure HTTP endpoint and integration with AWS SDKs. In the next step, copy data from Amazon Simple Storage Service (Amazon S3) to the temporary table.

article thumbnail

Ingest data from Google Analytics 4 and Google Sheets to Amazon Redshift using Amazon AppFlow

AWS Big Data

With Amazon AppFlow, you can run data flows at nearly any scale and at the frequency you chooseon a schedule, in response to a business event, or on demand. You can configure data transformation capabilities such as filtering and validation to generate rich, ready-to-use data as part of the flow itself, without additional steps.