Remove Data Transformation Remove Data Warehouse Remove Unstructured Data
article thumbnail

SAP Datasphere Powers Business at the Speed of Data

Rocket-Powered Data Science

In fact, by putting a single label like AI on all the steps of a data-driven business process, we have effectively not only blurred the process, but we have also blurred the particular characteristics that make each step separately distinct, uniquely critical, and ultimately dependent on specialized, specific technologies at each step.

article thumbnail

Straumann Group is transforming dentistry with data, AI

CIO Business Intelligence

The Basel, Switzerland-based company, which operates in more than 100 countries, has petabytes of data, including highly structured customer data, data about treatments and lab requests, operational data, and a massive, growing volume of unstructured data, particularly imaging data.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Ensuring Data Transformation Quality with dbt Core

Wayne Yaddow

How dbt Core aids data teams test, validate, and monitor complex data transformations and conversions Photo by NASA on Unsplash Introduction dbt Core, an open-source framework for developing, testing, and documenting SQL-based data transformations, has become a must-have tool for modern data teams as the complexity of data pipelines grows.

article thumbnail

7 key Microsoft Azure analytics services (plus one extra)

CIO Business Intelligence

The recent announcement of the Microsoft Intelligent Data Platform makes that more obvious, though analytics is only one part of that new brand. Azure Data Factory. Azure Data Lake Analytics. Data warehouses are designed for questions you already know you want to ask about your data, again and again.

Data Lake 115
article thumbnail

Biggest Trends in Data Visualization Taking Shape in 2022

Smart Data Collective

There are countless examples of big data transforming many different industries. There is no disputing the fact that the collection and analysis of massive amounts of unstructured data has been a huge breakthrough. How does Data Virtualization complement Data Warehousing and SOA Architectures?

article thumbnail

Data’s dark secret: Why poor quality cripples AI and growth

CIO Business Intelligence

Comparison of modern data architectures : Architecture Definition Strengths Weaknesses Best used when Data warehouse Centralized, structured and curated data repository. Inflexible schema, poor for unstructured or real-time data. Data lake Raw storage for all types of structured and unstructured data.

article thumbnail

Addressing the Three Scalability Challenges in Modern Data Platforms

Cloudera

In legacy analytical systems such as enterprise data warehouses, the scalability challenges of a system were primarily associated with computational scalability, i.e., the ability of a data platform to handle larger volumes of data in an agile and cost-efficient way. Introduction.