Remove Data Transformation Remove Document Remove Metadata
article thumbnail

Enriching metadata for accurate text-to-SQL generation for Amazon Athena

AWS Big Data

These data processing and analytical services support Structured Query Language (SQL) to interact with the data. Writing SQL queries requires not just remembering the SQL syntax rules, but also knowledge of the tables metadata, which is data about table schemas, relationships among the tables, and possible column values.

Metadata 105
article thumbnail

SAP Datasphere Powers Business at the Speed of Data

Rocket-Powered Data Science

Data collections are the ones and zeroes that encode the actionable insights (patterns, trends, relationships) that we seek to extract from our data through machine learning and data science. Source: [link] SAP also announced key partners that further enhance Datasphere as a powerful business data fabric.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Amazon OpenSearch Service launches flow builder to empower rapid AI search innovation

AWS Big Data

This middleware consists of custom code that runs data flows to stitch data transformations, search queries, and AI enrichments in varying combinations tailored to use cases, datasets, and requirements. Ingest flows are created to enrich data as its added to an index. An index constructed from the processed documents.

article thumbnail

Data’s dark secret: Why poor quality cripples AI and growth

CIO Business Intelligence

We also examine how centralized, hybrid and decentralized data architectures support scalable, trustworthy ecosystems. As data-centric AI, automated metadata management and privacy-aware data sharing mature, the opportunity to embed data quality into the enterprises core has never been more significant.

article thumbnail

Top 6 Benefits of Automating End-to-End Data Lineage

erwin

For example, automatically importing mappings from developers’ Excel sheets, flat files, Access and ETL tools into a comprehensive mappings inventory, complete with auto generated and meaningful documentation of the mappings, is a powerful way to support overall data governance. Data quality is crucial to every organization.

article thumbnail

The Ultimate Guide to Modern Data Quality Management (DQM) For An Effective Data Quality Control Driven by The Right Metrics

datapine

This person (or group of individuals) ensures that the theory behind data quality is communicated to the development team. 2 – Data profiling. Data profiling is an essential process in the DQM lifecycle. These processes could include reports, campaigns, or financial documentation. date, month, and year).

article thumbnail

Ensuring Data Transformation Quality with dbt Core

Wayne Yaddow

How dbt Core aids data teams test, validate, and monitor complex data transformations and conversions Photo by NASA on Unsplash Introduction dbt Core, an open-source framework for developing, testing, and documenting SQL-based data transformations, has become a must-have tool for modern data teams as the complexity of data pipelines grows.