Remove Data Transformation Remove Document Remove Publishing
article thumbnail

Expanding data analysis and visualization options: Amazon DataZone now integrates with Tableau, Power BI, and more

AWS Big Data

To achieve this, you need access to sales orders, shipment details, and customer data owned by the retail team. The retail team, acting as the data producer, publishes the necessary data assets to Amazon DataZone, allowing you, as a consumer, to discover and subscribe to these assets.

article thumbnail

Data’s dark secret: Why poor quality cripples AI and growth

CIO Business Intelligence

Build data validation rules directly into ingestion layers so that insufficient data is stopped at the gate and not detected after damage is done. Use lineage tooling to trace data from source to report. Understanding how data transforms and where it breaks is crucial for audibility and root-cause resolution.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

The Ultimate Guide to Modern Data Quality Management (DQM) For An Effective Data Quality Control Driven by The Right Metrics

datapine

Data processes that depended upon the previously defective data will likely need to be re-initiated, especially if their functioning was at risk or compromised by the defected data. These processes could include reports, campaigns, or financial documentation. Accuracy should be measured through source documentation (i.e.,

article thumbnail

Build and manage your modern data stack using dbt and AWS Glue through dbt-glue, the new “trusted” dbt adapter

AWS Big Data

dbt is an open source, SQL-first templating engine that allows you to write repeatable and extensible data transforms in Python and SQL. dbt is predominantly used by data warehouses (such as Amazon Redshift ) customers who are looking to keep their data transform logic separate from storage and engine.

Data Lake 122
article thumbnail

How CFM built a well-governed and scalable data-engineering platform using Amazon EMR for financial features generation

AWS Big Data

In recent years, driven by the commoditization of data storage and processing solutions, the industry has seen a growing number of systematic investment management firms switch to alternative data sources to drive their investment decisions. The bulk of our data scientists are heavy users of Jupyter Notebook. or later.

article thumbnail

Talk Data to Me: Why Employee Data Literacy Matters  

erwin

Increased data variety, balancing structured, semi-structured and unstructured data, as well as data originating from a widening array of external sources. Reducing the IT bottleneck that creates barriers to data accessibility. Hybrid on-premises/cloud environments that complicate data integration and preparation.

article thumbnail

Use Snowflake with Amazon MWAA to orchestrate data pipelines

AWS Big Data

Data is decompressed and stored in a different S3 bucket (transformed data can be stored in the same S3 bucket where data was ingested, but for simplicity, we’re using two separate S3 buckets). The transformed data is then made accessible to Snowflake for data analysis. Set the protocol to Email.