Remove Data Transformation Remove IoT Remove Optimization
article thumbnail

How SOCAR handles large IoT data with Amazon MSK and Amazon ElastiCache for Redis

AWS Big Data

This post is a continuation of How SOCAR built a streaming data pipeline to process IoT data for real-time analytics and control. SOCAR has deployed in-car devices that capture data using AWS IoT Core. This data was then stored in Amazon Relational Database Service (Amazon RDS).

IoT 110
article thumbnail

Amazon Redshift data ingestion options

AWS Big Data

With auto-copy, automation enhances the COPY command by adding jobs for automatic ingestion of data. If storing operational data in a data warehouse is a requirement, synchronization of tables between operational data stores and Amazon Redshift tables is supported.

IoT 105
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

From data lakes to insights: dbt adapter for Amazon Athena now supported in dbt Cloud

AWS Big Data

The need for streamlined data transformations As organizations increasingly adopt cloud-based data lakes and warehouses, the demand for efficient data transformation tools has grown. This approach helps in managing storage costs while maintaining the flexibility to analyze historical trends when needed.

article thumbnail

The Ten Standard Tools To Develop Data Pipelines In Microsoft Azure

DataKitchen

Let’s go through the ten Azure data pipeline tools Azure Data Factory : This cloud-based data integration service allows you to create data-driven workflows for orchestrating and automating data movement and transformation. You can use it for big data analytics and machine learning workloads.

article thumbnail

Reference guide to build inventory management and forecasting solutions on AWS

AWS Big Data

Accurately predicting demand for products allows businesses to optimize inventory levels, minimize stockouts, and reduce holding costs. Such a solution should use the latest technologies, including Internet of Things (IoT) sensors, cloud computing, and machine learning (ML), to provide accurate, timely, and actionable data.

article thumbnail

Harnessing Streaming Data: Insights at the Speed of Life

Sisense

The world is moving faster than ever, and companies processing large amounts of rapidly changing or growing data need to evolve to keep up — especially with the growth of Internet of Things (IoT) devices all around us. Let’s look at a few ways that different industries take advantage of streaming data. Optimizing object storage.

article thumbnail

7 key Microsoft Azure analytics services (plus one extra)

CIO Business Intelligence

If you can’t make sense of your business data, you’re effectively flying blind. Insights hidden in your data are essential for optimizing business operations, finetuning your customer experience, and developing new products — or new lines of business, like predictive maintenance. Azure Data Factory.

Data Lake 116