Remove Data Transformation Remove Metadata Remove Reference
article thumbnail

Enriching metadata for accurate text-to-SQL generation for Amazon Athena

AWS Big Data

These data processing and analytical services support Structured Query Language (SQL) to interact with the data. Writing SQL queries requires not just remembering the SQL syntax rules, but also knowledge of the tables metadata, which is data about table schemas, relationships among the tables, and possible column values.

Metadata 104
article thumbnail

The Ultimate Guide to Modern Data Quality Management (DQM) For An Effective Data Quality Control Driven by The Right Metrics

datapine

Reporting being part of an effective DQM, we will also go through some data quality metrics examples you can use to assess your efforts in the matter. But first, let’s define what data quality actually is. What is the definition of data quality? Why Do You Need Data Quality Management? 2 – Data profiling.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Modernize a legacy real-time analytics application with Amazon Managed Service for Apache Flink

AWS Big Data

Traditionally, such a legacy call center analytics platform would be built on a relational database that stores data from streaming sources. Data transformations through stored procedures and use of materialized views to curate datasets and generate insights is a known pattern with relational databases.

article thumbnail

From Raw Inputs to Polished Outputs: The Art of Testing Data Transformations

Wayne Yaddow

The goal is to examine five major methods of verifying and validating data transformations in data pipelines with an eye toward high-quality data deployment. First, we look at how unit and integration tests uncover transformation errors at an early stage. Applicability by Transformation Type 2.

Testing 52
article thumbnail

Introducing a new unified data connection experience with Amazon SageMaker Lakehouse unified data connectivity

AWS Big Data

With the ability to browse metadata, you can understand the structure and schema of the data source, identify relevant tables and fields, and discover useful data assets you may not be aware of. This new capability can simplify your data journey. To learn more, refer to Amazon SageMaker Unified Studio.

article thumbnail

BMW Cloud Efficiency Analytics powered by Amazon QuickSight and Amazon Athena

AWS Big Data

For more information on this foundation, refer to A Detailed Overview of the Cost Intelligence Dashboard. It seamlessly consolidates data from various data sources within AWS, including AWS Cost Explorer (and forecasting with Cost Explorer ), AWS Trusted Advisor , and AWS Compute Optimizer.

article thumbnail

Deliver decompressed Amazon CloudWatch Logs to Amazon S3 and Splunk using Amazon Data Firehose

AWS Big Data

You can see the decompressed data has metadata information such as logGroup , logStream , and subscriptionFilters , and the actual data is included within the message field under logEvents (the following example shows an example of CloudTrail events in the CloudWatch Logs).

Metadata 110