Remove Data Transformation Remove Metadata Remove Snapshot
article thumbnail

Modernize a legacy real-time analytics application with Amazon Managed Service for Apache Flink

AWS Big Data

Traditionally, such a legacy call center analytics platform would be built on a relational database that stores data from streaming sources. Data transformations through stored procedures and use of materialized views to curate datasets and generate insights is a known pattern with relational databases.

article thumbnail

Stream real-time data into Apache Iceberg tables in Amazon S3 using Amazon Data Firehose

AWS Big Data

For example, you can write some records using a batch ETL Spark job and other data from a Flink application at the same time and into the same table. Third, it allows scenarios such as time travel and rollback, so you can run SQL queries on a point-in-time snapshot of your data, or rollback data to a previously known good version.

Metadata 115
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Orca Security’s journey to a petabyte-scale data lake with Apache Iceberg and AWS Analytics

AWS Big Data

Specifically, the system uses Amazon SageMaker Processing jobs to process the data stored in the data lake, employing the AWS SDK for Pandas (previously known as AWS Wrangler) for various data transformation operations, including cleaning, normalization, and feature engineering.

article thumbnail

Enforce fine-grained access control on Open Table Formats via Amazon EMR integrated with AWS Lake Formation

AWS Big Data

Incremental query refers to a query strategy that focuses on processing and analyzing only the new or updated data within a data lake since the last query. The key idea behind incremental queries is to use metadata or change tracking mechanisms to identify the new or modified data since the last query.

Data Lake 115
article thumbnail

Build incremental data pipelines to load transactional data changes using AWS DMS, Delta 2.0, and Amazon EMR Serverless

AWS Big Data

Data ingestion – Steps 1 and 2 use AWS DMS, which connects to the source database and moves full and incremental data (CDC) to Amazon S3 in Parquet format. Data transformation – Steps 3 and 4 represent an EMR Serverless Spark application (Amazon EMR 6.9 Let’s refer to this S3 bucket as the raw layer.

article thumbnail

Build a data lake with Apache Flink on Amazon EMR

AWS Big Data

With a unified data catalog, you can quickly search datasets and figure out data schema, data format, and location. The AWS Glue Data Catalog provides a uniform repository where disparate systems can store and find metadata to keep track of data in data silos. Refer to Catalogs for more information.

article thumbnail

Build and manage your modern data stack using dbt and AWS Glue through dbt-glue, the new “trusted” dbt adapter

AWS Big Data

dbt is an open source, SQL-first templating engine that allows you to write repeatable and extensible data transforms in Python and SQL. dbt is predominantly used by data warehouses (such as Amazon Redshift ) customers who are looking to keep their data transform logic separate from storage and engine.

Data Lake 122