Remove Data Transformation Remove Metadata Remove Strategy
article thumbnail

Enriching metadata for accurate text-to-SQL generation for Amazon Athena

AWS Big Data

These data processing and analytical services support Structured Query Language (SQL) to interact with the data. Writing SQL queries requires not just remembering the SQL syntax rules, but also knowledge of the tables metadata, which is data about table schemas, relationships among the tables, and possible column values.

Metadata 102
article thumbnail

The Ultimate Guide to Modern Data Quality Management (DQM) For An Effective Data Quality Control Driven by The Right Metrics

datapine

Effective DQM is recognized as essential to any consistent data analysis, as the quality of data is crucial to derive actionable and – more importantly – accurate insights from your information. There are a lot of strategies that you can use to improve the quality of your information. 2 – Data profiling.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

How to Build a Successful Metadata Management Framework

Alation

This is where metadata, or the data about data, comes into play. Having a data catalog is the cornerstone of your data governance strategy, but what supports your data catalog? Your metadata management framework provides the underlying structure that makes your data accessible and manageable.

article thumbnail

Ensuring Data Transformation Quality with dbt Core

Wayne Yaddow

How dbt Core aids data teams test, validate, and monitor complex data transformations and conversions Photo by NASA on Unsplash Introduction dbt Core, an open-source framework for developing, testing, and documenting SQL-based data transformations, has become a must-have tool for modern data teams as the complexity of data pipelines grows.

article thumbnail

Available Now! Automated Testing for Data Transformations

Wayne Yaddow

Selecting the strategies and tools for validating data transformations and data conversions in your data pipelines. Introduction Data transformations and data conversions are crucial to ensure that raw data is organized, processed, and ready for useful analysis.

Testing 52
article thumbnail

From Raw Inputs to Polished Outputs: The Art of Testing Data Transformations

Wayne Yaddow

The goal is to examine five major methods of verifying and validating data transformations in data pipelines with an eye toward high-quality data deployment. First, we look at how unit and integration tests uncover transformation errors at an early stage. Applicability by Transformation Type 2.

Testing 52
article thumbnail

Top 6 Benefits of Automating End-to-End Data Lineage

erwin

Business terms and data policies should be implemented through standardized and documented business rules. Compliance with these business rules can be tracked through data lineage, incorporating auditability and validation controls across data transformations and pipelines to generate alerts when there are non-compliant data instances.