Remove Data Transformation Remove Modeling Remove Optimization
article thumbnail

MLOps and DevOps: Why Data Makes It Different

O'Reilly on Data

Let’s start by considering the job of a non-ML software engineer: writing traditional software deals with well-defined, narrowly-scoped inputs, which the engineer can exhaustively and cleanly model in the code. Not only is data larger, but models—deep learning models in particular—are much larger than before.

IT 350
article thumbnail

From data lakes to insights: dbt adapter for Amazon Athena now supported in dbt Cloud

AWS Big Data

The need for streamlined data transformations As organizations increasingly adopt cloud-based data lakes and warehouses, the demand for efficient data transformation tools has grown. This saves time and effort, especially for teams looking to minimize infrastructure management and focus solely on data modeling.

Data Lake 100
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

10 Examples of How Big Data in Logistics Can Transform The Supply Chain

datapine

Table of Contents 1) Benefits Of Big Data In Logistics 2) 10 Big Data In Logistics Use Cases Big data is revolutionizing many fields of business, and logistics analytics is no exception. The complex and ever-evolving nature of logistics makes it an essential use case for big data applications.

Big Data 275
article thumbnail

Building Better Data Models to Unlock Next-Level Intelligence

Sisense

You can’t talk about data analytics without talking about data modeling. The reasons for this are simple: Before you can start analyzing data, huge datasets like data lakes must be modeled or transformed to be usable. Building the right data model is an important part of your data strategy.

article thumbnail

Automating Data Pipelines in CDP with CDE Managed Airflow Service

Cloudera

When we announced the GA of Cloudera Data Engineering back in September of last year, a key vision we had was to simplify the automation of data transformation pipelines at scale. Typically users need to ingest data, transform it into optimal format with quality checks, and optimize querying of the data by visual analytics tool.

article thumbnail

12 data science certifications that will pay off

CIO Business Intelligence

The exam covers everything from fundamental to advanced data science concepts such as big data best practices, business strategies for data, building cross-organizational support, machine learning, natural language processing, scholastic modeling, and more.

article thumbnail

The Ten Standard Tools To Develop Data Pipelines In Microsoft Azure

DataKitchen

Let’s go through the ten Azure data pipeline tools Azure Data Factory : This cloud-based data integration service allows you to create data-driven workflows for orchestrating and automating data movement and transformation. You can use it for big data analytics and machine learning workloads.