article thumbnail

What companies get wrong about data transformation

CIO Business Intelligence

I think that speaks volumes to the type of commitment that organizations have to make around data in order to actually move the needle.”. So if funding and C-suite attention aren’t enough, what then is the key to ensuring an organization’s data transformation is successful? Analytics, Chief Data Officer, Data Management

article thumbnail

Data’s dark secret: Why poor quality cripples AI and growth

CIO Business Intelligence

Fragmented systems, inconsistent definitions, legacy infrastructure and manual workarounds introduce critical risks. These issues dont just hinder next-gen analytics and AI; they erode trust, delay transformation and diminish business value. Data quality is no longer a back-office concern. Embed end-to-end lineage tracking.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Key Challenges Affecting Data Transformations—Dev and Testing

Wayne Yaddow

Common challenges and practical mitigation strategies for reliable data transformations. Photo by Mika Baumeister on Unsplash Introduction Data transformations are important processes in data engineering, enabling organizations to structure, enrich, and integrate data for analytics , reporting, and operational decision-making.

Testing 52
article thumbnail

Functional Gaps in Your Data Transformation Testing Tools?

Wayne Yaddow

Managing tests of complex data transformations when automated data testing tools lack important features? Photo by Marvin Meyer on Unsplash Introduction Data transformations are at the core of modern business intelligence, blending and converting disparate datasets into coherent, reliable outputs.

Testing 52
article thumbnail

How to use foundation models and trusted governance to manage AI workflow risk

IBM Big Data Hub

As more businesses use AI systems and the technology continues to mature and change, improper use could expose a company to significant financial, operational, regulatory and reputational risks. It includes processes that trace and document the origin of data, models and associated metadata and pipelines for audits.

Risk 70
article thumbnail

Amazon OpenSearch Service launches flow builder to empower rapid AI search innovation

AWS Big Data

This middleware consists of custom code that runs data flows to stitch data transformations, search queries, and AI enrichments in varying combinations tailored to use cases, datasets, and requirements. Ingest flows are created to enrich data as its added to an index. Flows are a pipeline of processor resources.

article thumbnail

Data Engineers Are Using AI to Verify Data Transformations

Wayne Yaddow

AI is transforming how senior data engineers and data scientists validate data transformations and conversions. Artificial intelligence-based verification approaches aid in the detection of anomalies, the enforcement of data integrity, and the optimization of pipelines for improved efficiency.