article thumbnail

Introducing simplified interaction with the Airflow REST API in Amazon MWAA

AWS Big Data

response = client.create( key="test", value="Test value", description="Test description" ) print(response) print("nListing all variables.") variables = client.list() print(variables) print("nGetting the test variable.") Creating a test variable. Creating a test variable. Creating a test variable.

article thumbnail

MLOps and DevOps: Why Data Makes It Different

O'Reilly on Data

We need robust versioning for data, models, code, and preferably even the internal state of applications—think Git on steroids to answer inevitable questions: What changed? The applications must be integrated to the surrounding business systems so ideas can be tested and validated in the real world in a controlled manner.

IT 363
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Complex Data Transformations — Test Planning Best Practices

Wayne Yaddow

Complex Data TransformationsTest Planning Best Practices Ensuring data accuracy with structured testing and best practices Photo by Taylor Vick on Unsplash Introduction Data transformations and conversions are crucial for data pipelines, enabling organizations to process, integrate, and refine raw data into meaningful insights.

Testing 52
article thumbnail

Available Now! Automated Testing for Data Transformations

Wayne Yaddow

Selecting the strategies and tools for validating data transformations and data conversions in your data pipelines. Introduction Data transformations and data conversions are crucial to ensure that raw data is organized, processed, and ready for useful analysis.

Testing 52
article thumbnail

Functional Gaps in Your Data Transformation Testing Tools?

Wayne Yaddow

Managing tests of complex data transformations when automated data testing tools lack important features? Photo by Marvin Meyer on Unsplash Introduction Data transformations are at the core of modern business intelligence, blending and converting disparate datasets into coherent, reliable outputs.

Testing 52
article thumbnail

Key Challenges Affecting Data Transformations—Dev and Testing

Wayne Yaddow

Common challenges and practical mitigation strategies for reliable data transformations. Photo by Mika Baumeister on Unsplash Introduction Data transformations are important processes in data engineering, enabling organizations to structure, enrich, and integrate data for analytics , reporting, and operational decision-making.

Testing 52
article thumbnail

From Raw Inputs to Polished Outputs: The Art of Testing Data Transformations

Wayne Yaddow

In this post, well see the fundamental procedures, tools, and techniques that data engineers, data scientists, and QA/testing teams use to ensure high-quality data as soon as its deployed. First, we look at how unit and integration tests uncover transformation errors at an early stage. PyTest, JUnit,NUnit).

Testing 52