Remove Data Warehouse Remove Download Remove Snapshot
article thumbnail

Load data incrementally from transactional data lakes to data warehouses

AWS Big Data

Data lakes and data warehouses are two of the most important data storage and management technologies in a modern data architecture. Data lakes store all of an organization’s data, regardless of its format or structure. Delta Lake doesn’t have a specific concept for incremental queries.

Data Lake 121
article thumbnail

Run Apache XTable in AWS Lambda for background conversion of open table formats

AWS Big Data

This post was co-written with Dipankar Mazumdar, Staff Data Engineering Advocate with AWS Partner OneHouse. Data architecture has evolved significantly to handle growing data volumes and diverse workloads. First, we download the XTtable GitHub repository and build the jar with the maven CLI.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Implement historical record lookup and Slowly Changing Dimensions Type-2 using Apache Iceberg

AWS Big Data

This approach has been widely used in data warehouses to track changes in various dimensions such as customer information, product details, and employee data. It enables point-in-time analysis, provides detailed audit trails, aids in data quality management, and helps meet compliance requirements by preserving historical data.

article thumbnail

Build an Amazon Redshift data warehouse using an Amazon DynamoDB single-table design

AWS Big Data

These types of queries are suited for a data warehouse. The goal of a data warehouse is to enable businesses to analyze their data fast; this is important because it means they are able to gain valuable insights in a timely manner. Amazon Redshift is fully managed, scalable, cloud data warehouse.

article thumbnail

Evaluating sample Amazon Redshift data sharing architecture using Redshift Test Drive and advanced SQL analysis

AWS Big Data

With the launch of Amazon Redshift Serverless and the various provisioned instance deployment options , customers are looking for tools that help them determine the most optimal data warehouse configuration to support their Amazon Redshift workloads. Download the analysis notebook from Amazon S3.

Testing 107
article thumbnail

Use Amazon Athena with Spark SQL for your open-source transactional table formats

AWS Big Data

These formats enable ACID (atomicity, consistency, isolation, durability) transactions, upserts, and deletes, and advanced features such as time travel and snapshots that were previously only available in data warehouses. It will never remove files that are still required by a non-expired snapshot.

Snapshot 114
article thumbnail

Migrate Microsoft Azure Synapse Analytics to Amazon Redshift using AWS SCT

AWS Big Data

Amazon Redshift is a fast, fully managed, petabyte-scale data warehouse that provides the flexibility to use provisioned or serverless compute for your analytical workloads. You can get faster insights without spending valuable time managing your data warehouse. Download the Redshift JDBC driver.

Analytics 107