Remove Data Warehouse Remove Events Remove Snapshot
article thumbnail

Building end-to-end data lineage for one-time and complex queries using Amazon Athena, Amazon Redshift, Amazon Neptune and dbt

AWS Big Data

Complex queries, on the other hand, refer to large-scale data processing and in-depth analysis based on petabyte-level data warehouses in massive data scenarios. AWS Glue crawler crawls data lake information from Amazon S3, generating a Data Catalog to support dbt on Amazon Athena data modeling.

article thumbnail

Run Apache XTable in AWS Lambda for background conversion of open table formats

AWS Big Data

This post was co-written with Dipankar Mazumdar, Staff Data Engineering Advocate with AWS Partner OneHouse. Data architecture has evolved significantly to handle growing data volumes and diverse workloads. For a table that will be converted, it invokes the converter Lambda function through an event.

Metadata 101
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Implement disaster recovery with Amazon Redshift

AWS Big Data

Amazon Redshift is a fully managed, petabyte-scale data warehouse service in the cloud. You can start with just a few hundred gigabytes of data and scale to a petabyte or more. This enables you to use your data to acquire new insights for your business and customers. For additional details, refer to Automated snapshots.

article thumbnail

Build an Amazon Redshift data warehouse using an Amazon DynamoDB single-table design

AWS Big Data

These types of queries are suited for a data warehouse. The goal of a data warehouse is to enable businesses to analyze their data fast; this is important because it means they are able to gain valuable insights in a timely manner. Amazon Redshift is fully managed, scalable, cloud data warehouse.

article thumbnail

How Gupshup built their multi-tenant messaging analytics platform on Amazon Redshift

AWS Big Data

About Redshift and some relevant features for the use case Amazon Redshift is a fully managed, petabyte-scale, massively parallel data warehouse that offers simple operations and high performance. It makes it fast, simple, and cost-effective to analyze all your data using standard SQL and your existing business intelligence (BI) tools.

Analytics 118
article thumbnail

Simplify data integration with AWS Glue and zero-ETL to Amazon SageMaker Lakehouse

AWS Big Data

With this new functionality, customers can create up-to-date replicas of their data from applications such as Salesforce, ServiceNow, and Zendesk in an Amazon SageMaker Lakehouse and Amazon Redshift. SageMaker Lakehouse gives you the flexibility to access and query your data in-place with all Apache Iceberg compatible tools and engines.

article thumbnail

How Cloudinary transformed their petabyte scale streaming data lake with Apache Iceberg and AWS Analytics

AWS Big Data

Enterprises and organizations across the globe want to harness the power of data to make better decisions by putting data at the center of every decision-making process. However, throughout history, data services have held dominion over their customers’ data. SparkActions.get().expireSnapshots(iceTable).expireOlderThan(TimeUnit.DAYS.toMillis(7)).execute()

Data Lake 125