Remove Data Warehouse Remove IoT Remove Structured Data
article thumbnail

How EUROGATE established a data mesh architecture using Amazon DataZone

AWS Big Data

Their terminal operations rely heavily on seamless data flows and the management of vast volumes of data. Recently, EUROGATE has developed a digital twin for its container terminal Hamburg (CTH), generating millions of data points every second from Internet of Things (IoT)devices attached to its container handling equipment (CHE).

IoT 111
article thumbnail

How gaming companies can use Amazon Redshift Serverless to build scalable analytical applications faster and easier

AWS Big Data

Data lakes are more focused around storing and maintaining all the data in an organization in one place. And unlike data warehouses, which are primarily analytical stores, a data hub is a combination of all types of repositories—analytical, transactional, operational, reference, and data I/O services, along with governance processes.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Building Better Data Models to Unlock Next-Level Intelligence

Sisense

We’re going to nerd out for a minute and dig into the evolving architecture of Sisense to illustrate some elements of the data modeling process: Historically, the data modeling process that Sisense recommended was to structure data mainly to support the BI and analytics capabilities/users.

article thumbnail

Transforming Big Data into Actionable Intelligence

Sisense

Looking at the diagram, we see that Business Intelligence (BI) is a collection of analytical methods applied to big data to surface actionable intelligence by identifying patterns in voluminous data. As we move from right to left in the diagram, from big data to BI, we notice that unstructured data transforms into structured data.

article thumbnail

Cloudera + Hortonworks, from the Edge to AI

Cloudera

The tremendous growth in both unstructured and structured data overwhelms traditional data warehouses. We are both convinced that a scale-out, shared-nothing architecture — the foundation of Hadoop — is essential for IoT, data warehousing and ML. We have each innovated separately in those areas.

article thumbnail

Data platform trinity: Competitive or complementary?

IBM Big Data Hub

In another decade, the internet and mobile started the generate data of unforeseen volume, variety and velocity. It required a different data platform solution. Hence, Data Lake emerged, which handles unstructured and structured data with huge volume. Data lakehouse was created to solve these problems.

article thumbnail

5 Key Takeaways from #Current2023

Cloudera

As organizations shift from the modernization of data-driven applications via Kafka towards delivering real-time insight and/or powering smart automated systems, Flink At Current, adoption of Flink was a hot topic and many of the vendors (Cloudera included) use Flink as the engine to power their stream processing offerings as well.