Remove Data Warehouse Remove Marketing Remove OLAP
article thumbnail

The Ultimate Guide to Data Warehouse Automation and Tools

Jet Global

This puts tremendous stress on the teams managing data warehouses, and they struggle to keep up with the demand for increasingly advanced analytic requests. To gather and clean data from all internal systems and gain the business insights needed to make smarter decisions, businesses need to invest in data warehouse automation.

article thumbnail

Database vs. Data Warehouse: What’s the Difference?

Jet Global

Whether the reporting is being done by an end user, a data science team, or an AI algorithm, the future of your business depends on your ability to use data to drive better quality for your customers at a lower cost. So, when it comes to collecting, storing, and analyzing data, what is the right choice for your enterprise?

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

How OLAP and AI can enable better business

IBM Big Data Hub

Online analytical processing (OLAP) database systems and artificial intelligence (AI) complement each other and can help enhance data analysis and decision-making when used in tandem. As AI techniques continue to evolve, innovative applications in the OLAP domain are anticipated.

OLAP 57
article thumbnail

Simplify Online Analytical Processing (OLAP) queries in Amazon Redshift using new SQL constructs such as ROLLUP, CUBE, and GROUPING SETS

AWS Big Data

Amazon Redshift is a fully managed, petabyte-scale, massively parallel data warehouse that makes it fast, simple, and cost-effective to analyze all your data using standard SQL and your existing business intelligence (BI) tools. This will allow for a smoother migration of OLAP workloads, with minimal rewrites.

article thumbnail

Unlocking Data Storage: The Traditional Data Warehouse vs. Cloud Data Warehouse

Sisense

Data warehouse vs. databases Traditional vs. Cloud Explained Cloud data warehouses in your data stack A data-driven future powered by the cloud. We live in a world of data: There’s more of it than ever before, in a ceaselessly expanding array of forms and locations. Data warehouse vs. databases.

article thumbnail

Complexity Drives Costs: A Look Inside BYOD and Azure Data Lakes

Jet Global

The company’s market power is based largely on its ability to promote the “stack”—that is, to position the entire suite of Microsoft products as a holistic solution to customer problems. For more powerful, multidimensional OLAP-style reporting, however, it falls short. OLAP reporting has traditionally relied on a data warehouse.

article thumbnail

Navigating Data Entities, BYOD, and Data Lakes in Microsoft Dynamics

Jet Global

For more sophisticated multidimensional reporting functions, however, a more advanced approach to staging data is required. The Data Warehouse Approach. Data warehouses gained momentum back in the early 1990s as companies dealing with growing volumes of data were seeking ways to make analytics faster and more accessible.