Remove Data Warehouse Remove Measurement Remove Structured Data
article thumbnail

Migrate a petabyte-scale data warehouse from Actian Vectorwise to Amazon Redshift

AWS Big Data

Amazon Redshift is a fast, scalable, and fully managed cloud data warehouse that allows you to process and run your complex SQL analytics workloads on structured and semi-structured data. Solution overview Amazon Redshift is an industry-leading cloud data warehouse.

article thumbnail

Incremental refresh for Amazon Redshift materialized views on data lake tables

AWS Big Data

Amazon Redshift is a fast, fully managed cloud data warehouse that makes it cost-effective to analyze your data using standard SQL and business intelligence tools. However, if you want to test the examples using sample data, download the sample data. Amazon Redshift delivers price performance right out of the box.

Data Lake 105
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Key considerations when making a decision on a Cloud Data Warehouse

Cloudera

Making a decision on a cloud data warehouse is a big deal. Modernizing your data warehousing experience with the cloud means moving from dedicated, on-premises hardware focused on traditional relational analytics on structured data to a modern platform.

article thumbnail

Build an Amazon Redshift data warehouse using an Amazon DynamoDB single-table design

AWS Big Data

Nonetheless, many of the same customers using DynamoDB would also like to be able to perform aggregations and ad hoc queries against their data to measure important KPIs that are pertinent to their business. A typical ask for this data may be to identify sales trends as well as sales growth on a yearly, monthly, or even daily basis.

article thumbnail

How EUROGATE established a data mesh architecture using Amazon DataZone

AWS Big Data

AWS Database Migration Service (AWS DMS) is used to securely transfer the relevant data to a central Amazon Redshift cluster. The data in the central data warehouse in Amazon Redshift is then processed for analytical needs and the metadata is shared to the consumers through Amazon DataZone.

IoT 111
article thumbnail

Data governance in the age of generative AI

AWS Big Data

First, many LLM use cases rely on enterprise knowledge that needs to be drawn from unstructured data such as documents, transcripts, and images, in addition to structured data from data warehouses. The user permissions are evaluated using AWS Lake Formation to filter the relevant data.

article thumbnail

3 things to get right with data management for gen AI projects

CIO Business Intelligence

Collect, filter, and categorize data The first is a series of processes — collecting, filtering, and categorizing data — that may take several months for KM or RAG models. Structured data is relatively easy, but the unstructured data, while much more difficult to categorize, is the most valuable.