Remove Data Warehouse Remove Metadata Remove Modeling
article thumbnail

Enriching metadata for accurate text-to-SQL generation for Amazon Athena

AWS Big Data

Enterprise data is brought into data lakes and data warehouses to carry out analytical, reporting, and data science use cases using AWS analytical services like Amazon Athena , Amazon Redshift , Amazon EMR , and so on. foundation model (FM) in Amazon Bedrock as the LLM. Can it also help write SQL queries?

article thumbnail

SAP Datasphere Powers Business at the Speed of Data

Rocket-Powered Data Science

In fact, by putting a single label like AI on all the steps of a data-driven business process, we have effectively not only blurred the process, but we have also blurred the particular characteristics that make each step separately distinct, uniquely critical, and ultimately dependent on specialized, specific technologies at each step.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Understanding the Differences Between Data Lakes and Data Warehouses

Smart Data Collective

Data lakes and data warehouses are probably the two most widely used structures for storing data. Data Warehouses and Data Lakes in a Nutshell. A data warehouse is used as a central storage space for large amounts of structured data coming from various sources. Key Differences.

Data Lake 140
article thumbnail

Write queries faster with Amazon Q generative SQL for Amazon Redshift

AWS Big Data

Amazon Redshift is a fully managed, AI-powered cloud data warehouse that delivers the best price-performance for your analytics workloads at any scale. It enables you to get insights faster without extensive knowledge of your organization’s complex database schema and metadata. Your data is not shared across accounts.

article thumbnail

Recap of Amazon Redshift key product announcements in 2024

AWS Big Data

Amazon Redshift , launched in 2013, has undergone significant evolution since its inception, allowing customers to expand the horizons of data warehousing and SQL analytics. Industry-leading price-performance Amazon Redshift offers up to three times better price-performance than alternative cloud data warehouses.

article thumbnail

7 Benefits of Metadata Management

erwin

Metadata management is key to wringing all the value possible from data assets. However, most organizations don’t use all the data at their disposal to reach deeper conclusions about how to drive revenue, achieve regulatory compliance or accomplish other strategic objectives. What Is Metadata? Harvest data.

Metadata 110
article thumbnail

Run Apache XTable in AWS Lambda for background conversion of open table formats

AWS Big Data

This post was co-written with Dipankar Mazumdar, Staff Data Engineering Advocate with AWS Partner OneHouse. Data architecture has evolved significantly to handle growing data volumes and diverse workloads. The synchronization process in XTable works by translating table metadata using the existing APIs of these table formats.