Remove Data Warehouse Remove Metadata Remove Reference
article thumbnail

Enriching metadata for accurate text-to-SQL generation for Amazon Athena

AWS Big Data

Enterprise data is brought into data lakes and data warehouses to carry out analytical, reporting, and data science use cases using AWS analytical services like Amazon Athena , Amazon Redshift , Amazon EMR , and so on. Table metadata is fetched from AWS Glue. The generated Athena SQL query is run.

article thumbnail

Seamless integration of data lake and data warehouse using Amazon Redshift Spectrum and Amazon DataZone

AWS Big Data

Unifying these necessitates additional data processing, requiring each business unit to provision and maintain a separate data warehouse. This burdens business units focused solely on consuming the curated data for analysis and not concerned with data management tasks, cleansing, or comprehensive data processing.

Data Lake 102
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

How Eightfold AI implemented metadata security in a multi-tenant data analytics environment with Amazon Redshift

AWS Big Data

As part of the Talent Intelligence Platform Eightfold also exposes a data hub where each customer can access their Amazon Redshift-based data warehouse and perform ad hoc queries as well as schedule queries for reporting and data export. Many customers have implemented Amazon Redshift to support multi-tenant applications.

Metadata 108
article thumbnail

Manage your data warehouse cost allocations with Amazon Redshift Serverless tagging

AWS Big Data

Amazon Redshift Serverless makes it simple to run and scale analytics without having to manage your data warehouse infrastructure. Tags allows you to assign metadata to your AWS resources. For more details on tagging, refer to Tagging resources overview. For more tagging best practices, refer to Tagging AWS resources.

article thumbnail

Expand data access through Apache Iceberg using Delta Lake UniForm on AWS

AWS Big Data

You can learn how to query Delta Lake native tables through UniForm from different data warehouses or engines such as Amazon Redshift as an example of expanding data access to more engines. Both Delta Lake and Iceberg metadata files reference the same data files. in Delta Lake public document. Appendix 1.

article thumbnail

The Benefits of a Knowledge Graph-based Metadata Hub

Ontotext

But whatever their business goals, in order to turn their invisible data into a valuable asset, they need to understand what they have and to be able to efficiently find what they need. Enter metadata. It enables us to make sense of our data because it tells us what it is and how best to use it. Knowledge (metadata) layer.

article thumbnail

Write queries faster with Amazon Q generative SQL for Amazon Redshift

AWS Big Data

Amazon Redshift is a fully managed, AI-powered cloud data warehouse that delivers the best price-performance for your analytics workloads at any scale. It enables you to get insights faster without extensive knowledge of your organization’s complex database schema and metadata. Your data is not shared across accounts.