Remove Data Warehouse Remove Metadata Remove Snapshot
article thumbnail

Run Apache XTable in AWS Lambda for background conversion of open table formats

AWS Big Data

This post was co-written with Dipankar Mazumdar, Staff Data Engineering Advocate with AWS Partner OneHouse. Data architecture has evolved significantly to handle growing data volumes and diverse workloads. The synchronization process in XTable works by translating table metadata using the existing APIs of these table formats.

Metadata 105
article thumbnail

Build Write-Audit-Publish pattern with Apache Iceberg branching and AWS Glue Data Quality

AWS Big Data

Icebergs branching feature Iceberg offers a branching feature for data lifecycle management, which is particularly useful for efficiently implementing the WAP pattern. The metadata of an Iceberg table stores a history of snapshots. Replace with the S3 bucket from the CloudFormation Outputs tab.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Manage your data warehouse cost allocations with Amazon Redshift Serverless tagging

AWS Big Data

Amazon Redshift Serverless makes it simple to run and scale analytics without having to manage your data warehouse infrastructure. Tags allows you to assign metadata to your AWS resources. For Filter by resource type , you can filter by Workgroup , Namespace , Snapshot , and Recovery Point.

article thumbnail

Open Data Lakehouse powered by Iceberg for all your Data Warehouse needs

Cloudera

In this blog, we will share with you in detail how Cloudera integrates core compute engines including Apache Hive and Apache Impala in Cloudera Data Warehouse with Iceberg. We will publish follow up blogs for other data services. Iceberg basics Iceberg is an open table format designed for large analytic workloads.

article thumbnail

Use Apache Iceberg in your data lake with Amazon S3, AWS Glue, and Snowflake

AWS Big Data

Data engineers use Apache Iceberg because it’s fast, efficient, and reliable at any scale and keeps records of how datasets change over time. Apache Iceberg offers integrations with popular data processing frameworks such as Apache Spark, Apache Flink, Apache Hive, Presto, and more.

Data Lake 127
article thumbnail

How Cloudinary transformed their petabyte scale streaming data lake with Apache Iceberg and AWS Analytics

AWS Big Data

When evolving such a partition definition, the data in the table prior to the change is unaffected, as is its metadata. Only data that is written to the table after the evolution is partitioned with the new definition, and the metadata for this new set of data is kept separately. SparkActions.get().expireSnapshots(iceTable).expireOlderThan(TimeUnit.DAYS.toMillis(7)).execute()

Data Lake 126
article thumbnail

Implement historical record lookup and Slowly Changing Dimensions Type-2 using Apache Iceberg

AWS Big Data

With change log view, we can easily track insertions, updates, and deletions, giving us a complete picture of how our data has evolved. For our heater example, Icebergs change log view would allow us to effortlessly retrieve a timeline of all price changes, complete with timestamps and other relevant metadata, as shown in the following table.