Remove Data Warehouse Remove Metadata Remove Structured Data Remove Visualization
article thumbnail

Data governance in the age of generative AI

AWS Big Data

However, enterprise data generated from siloed sources combined with the lack of a data integration strategy creates challenges for provisioning the data for generative AI applications. Let’s look at some of the key changes in the data pipelines namely, data cataloging, data quality, and vector embedding security in more detail.

article thumbnail

How to get powerful and actionable insights from any and all of your data, without delay

Cloudera

By enabling their event analysts to monitor and analyze events in real time, as well as directly in their data visualization tool, and also rate and give feedback to the system interactively, they increased their data to insight productivity by a factor of 10. . Our solution: Cloudera Data Visualization.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Recap of Amazon Redshift key product announcements in 2024

AWS Big Data

Amazon Redshift , launched in 2013, has undergone significant evolution since its inception, allowing customers to expand the horizons of data warehousing and SQL analytics. Industry-leading price-performance Amazon Redshift offers up to three times better price-performance than alternative cloud data warehouses.

article thumbnail

How EUROGATE established a data mesh architecture using Amazon DataZone

AWS Big Data

In addition to real-time analytics and visualization, the data needs to be shared for long-term data analytics and machine learning applications. From here, the metadata is published to Amazon DataZone by using AWS Glue Data Catalog. This process is shown in the following figure.

IoT 91
article thumbnail

Create an end-to-end data strategy for Customer 360 on AWS

AWS Big Data

Profile aggregation – When you’ve uniquely identified a customer, you can build applications in Managed Service for Apache Flink to consolidate all their metadata, from name to interaction history. Then, you transform this data into a concise format. Users interested in visual exploration can do so using AWS Glue DataBrew.

article thumbnail

How gaming companies can use Amazon Redshift Serverless to build scalable analytical applications faster and easier

AWS Big Data

Data lakes are more focused around storing and maintaining all the data in an organization in one place. And unlike data warehouses, which are primarily analytical stores, a data hub is a combination of all types of repositories—analytical, transactional, operational, reference, and data I/O services, along with governance processes.

article thumbnail

Data Swamp, Data Lake, Data Lakehouse: What to Know

Alation

That dirty data then corrupts analyses and forces mistakes. A frequent and periodic data cleansing strategy is. Lack of metadata. A lack of organization is another sign of a data swamp, typically driven by bad or incomplete metadata.