Remove Data Warehouse Remove Metadata Remove Structured Data Remove Visualization
article thumbnail

Data governance in the age of generative AI

AWS Big Data

However, enterprise data generated from siloed sources combined with the lack of a data integration strategy creates challenges for provisioning the data for generative AI applications. Let’s look at some of the key changes in the data pipelines namely, data cataloging, data quality, and vector embedding security in more detail.

article thumbnail

How to get powerful and actionable insights from any and all of your data, without delay

Cloudera

By enabling their event analysts to monitor and analyze events in real time, as well as directly in their data visualization tool, and also rate and give feedback to the system interactively, they increased their data to insight productivity by a factor of 10. . Our solution: Cloudera Data Visualization.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

How gaming companies can use Amazon Redshift Serverless to build scalable analytical applications faster and easier

AWS Big Data

Data lakes are more focused around storing and maintaining all the data in an organization in one place. And unlike data warehouses, which are primarily analytical stores, a data hub is a combination of all types of repositories—analytical, transactional, operational, reference, and data I/O services, along with governance processes.

article thumbnail

Implement data quality checks on Amazon Redshift data assets and integrate with Amazon DataZone

AWS Big Data

To address the issue of data quality, Amazon DataZone now integrates directly with AWS Glue Data Quality, allowing you to visualize data quality scores for AWS Glue Data Catalog assets directly within the Amazon DataZone web portal. Amazon DataZone natively supports data sharing for Amazon Redshift data assets.

article thumbnail

Exploring real-time streaming for generative AI Applications

AWS Big Data

Streaming jobs constantly ingest new data to synchronize across systems and can perform enrichment, transformations, joins, and aggregations across windows of time more efficiently. OpenSearch Service offers visualization capabilities powered by OpenSearch Dashboards and Kibana (1.5 versions).

Data Lake 102
article thumbnail

Top Graph Use Cases and Enterprise Applications (with Real World Examples)

Ontotext

Specifically, the increasing amount of data being generated and collected, and the need to make sense of it, and its use in artificial intelligence and machine learning, which can benefit from the structured data and context provided by knowledge graphs. We get this question regularly. million users.

article thumbnail

Create an end-to-end data strategy for Customer 360 on AWS

AWS Big Data

Profile aggregation – When you’ve uniquely identified a customer, you can build applications in Managed Service for Apache Flink to consolidate all their metadata, from name to interaction history. Then, you transform this data into a concise format. Users interested in visual exploration can do so using AWS Glue DataBrew.