Remove Data Warehouse Remove Metrics Remove Publishing
article thumbnail

The Ultimate Guide to Modern Data Quality Management (DQM) For An Effective Data Quality Control Driven by The Right Metrics

datapine

1) What Is Data Quality Management? 4) Data Quality Best Practices. 5) How Do You Measure Data Quality? 6) Data Quality Metrics Examples. 7) Data Quality Control: Use Case. 8) The Consequences Of Bad Data Quality. 9) 3 Sources Of Low-Quality Data. 10) Data Quality Solutions: Key Attributes.

article thumbnail

Cloudera Data Warehouse Demonstrates Best-in-Class Cloud-Native Price-Performance

Cloudera

Cloud data warehouses allow users to run analytic workloads with greater agility, better isolation and scale, and lower administrative overhead than ever before. The results demonstrate superior price performance of Cloudera Data Warehouse on the full set of 99 queries from the TPC-DS benchmark. Introduction.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Enhance monitoring and debugging for AWS Glue jobs using new job observability metrics, Part 3: Visualization and trend analysis using Amazon QuickSight

AWS Big Data

In Part 2 of this series, we discussed how to enable AWS Glue job observability metrics and integrate them with Grafana for real-time monitoring. In this post, we explore how to connect QuickSight to Amazon CloudWatch metrics and build graphs to uncover trends in AWS Glue job observability metrics.

Metrics 128
article thumbnail

Simplify Metrics on Apache Druid With Rill Data and Cloudera

Cloudera

Co-author: Mike Godwin, Head of Marketing, Rill Data. Cloudera has partnered with Rill Data, an expert in metrics at any scale, as Cloudera’s preferred ISV partner to provide technical expertise and support services for Apache Druid customers. Deploying metrics shouldn’t be so hard. Cloudera Data Warehouse).

Metrics 87
article thumbnail

How EUROGATE established a data mesh architecture using Amazon DataZone

AWS Big Data

Plug-and-play integration : A seamless, plug-and-play integration between data producers and consumers should facilitate rapid use of new data sets and enable quick proof of concepts, such as in the data science teams. As part of the required data, CHE data is shared using Amazon DataZone.

IoT 111
article thumbnail

How ANZ Institutional Division built a federated data platform to enable their domain teams to build data products to support business outcomes

AWS Big Data

These nodes can implement analytical platforms like data lake houses, data warehouses, or data marts, all united by producing data products. This strategy supports each division’s autonomy to implement their own data catalogs and decide which data products to publish to the group-level catalog.

Metadata 105
article thumbnail

Unlock scalability, cost-efficiency, and faster insights with large-scale data migration to Amazon Redshift

AWS Big Data

Large-scale data warehouse migration to the cloud is a complex and challenging endeavor that many organizations undertake to modernize their data infrastructure, enhance data management capabilities, and unlock new business opportunities. This makes sure the new data platform can meet current and future business goals.