Remove Data Warehouse Remove Modeling Remove Online Analytical Processing
article thumbnail

What Are OLAP (Online Analytical Processing) Tools?

Smart Data Collective

This tool can be great for handing SQL queries and other data queries. Every data scientist needs to understand the benefits that this technology offers. Online analytical processing is a computer method that enables users to retrieve and query data rapidly and carefully in order to study it from a variety of angles.

article thumbnail

Build an Amazon Redshift data warehouse using an Amazon DynamoDB single-table design

AWS Big Data

In traditional databases, we would model such applications using a normalized data model (entity-relation diagram). Deriving business insights by identifying year-on-year sales growth is an example of an online analytical processing (OLAP) query. These types of queries are suited for a data warehouse.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

How to Build a Performant Data Warehouse in Redshift

Sisense

This blog is intended to give an overview of the considerations you’ll want to make as you build your Redshift data warehouse to ensure you are getting the optimal performance. First, we’ll dive into the two types of databases: OLAP (Online Analytical Processing) and OLTP (Online Transaction Processing).

article thumbnail

What is business intelligence? Transforming data into business insights

CIO Business Intelligence

Improved employee satisfaction: Providing business users access to data without having to contact analysts or IT can reduce friction, increase productivity, and facilitate faster results. Whereas BI studies historical data to guide business decision-making, business analytics is about looking forward.

article thumbnail

Data Model Development Using Jinja

Sisense

Every aspect of analytics is powered by a data model. A data model presents a “single source of truth” that all analytics queries are based on, from internal reports and insights embedded into applications to the data underlying AI algorithms and much more. Data modeling organizes and transforms data.

article thumbnail

Navigating Data Entities, BYOD, and Data Lakes in Microsoft Dynamics

Jet Global

Consultants and developers familiar with the AX data model could query the database using any number of different tools, including a myriad of different report writers. Data entities are more secure and arguably easier to master than the relational database model, but one downside is there are lots of them! Data Lakes.

article thumbnail

Unlock scalability, cost-efficiency, and faster insights with large-scale data migration to Amazon Redshift

AWS Big Data

Large-scale data warehouse migration to the cloud is a complex and challenging endeavor that many organizations undertake to modernize their data infrastructure, enhance data management capabilities, and unlock new business opportunities. This makes sure the new data platform can meet current and future business goals.