Remove Data Warehouse Remove OLAP Remove Technology
article thumbnail

What Are OLAP (Online Analytical Processing) Tools?

Smart Data Collective

One of the most valuable tools available is OLAP. This tool can be great for handing SQL queries and other data queries. Every data scientist needs to understand the benefits that this technology offers. Using OLAP Tools Properly. Several or more cubes are used to separate OLAP databases. see more ).

article thumbnail

The Ultimate Guide to Data Warehouse Automation and Tools

Jet Global

This puts tremendous stress on the teams managing data warehouses, and they struggle to keep up with the demand for increasingly advanced analytic requests. To gather and clean data from all internal systems and gain the business insights needed to make smarter decisions, businesses need to invest in data warehouse automation.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

How to Build a Performant Data Warehouse in Redshift

Sisense

This blog is intended to give an overview of the considerations you’ll want to make as you build your Redshift data warehouse to ensure you are getting the optimal performance. OLTP vs OLAP. First, we’ll dive into the two types of databases: OLAP (Online Analytical Processing) and OLTP (Online Transaction Processing).

article thumbnail

How OLAP and AI can enable better business

IBM Big Data Hub

Online analytical processing (OLAP) database systems and artificial intelligence (AI) complement each other and can help enhance data analysis and decision-making when used in tandem. As AI techniques continue to evolve, innovative applications in the OLAP domain are anticipated.

OLAP 57
article thumbnail

Unlocking Data Storage: The Traditional Data Warehouse vs. Cloud Data Warehouse

Sisense

Data warehouse vs. databases Traditional vs. Cloud Explained Cloud data warehouses in your data stack A data-driven future powered by the cloud. We live in a world of data: There’s more of it than ever before, in a ceaselessly expanding array of forms and locations. Data warehouse vs. databases.

article thumbnail

Complexity Drives Costs: A Look Inside BYOD and Azure Data Lakes

Jet Global

For more powerful, multidimensional OLAP-style reporting, however, it falls short. OLAP reporting has traditionally relied on a data warehouse. OLAP reporting based on a data warehouse model is a well-proven solution for companies with robust reporting requirements.

article thumbnail

Navigating Data Entities, BYOD, and Data Lakes in Microsoft Dynamics

Jet Global

For more sophisticated multidimensional reporting functions, however, a more advanced approach to staging data is required. The Data Warehouse Approach. Data warehouses gained momentum back in the early 1990s as companies dealing with growing volumes of data were seeking ways to make analytics faster and more accessible.