Remove Data Warehouse Remove Online Analytical Processing Remove Optimization
article thumbnail

Build an Amazon Redshift data warehouse using an Amazon DynamoDB single-table design

AWS Big Data

Deriving business insights by identifying year-on-year sales growth is an example of an online analytical processing (OLAP) query. These types of queries are suited for a data warehouse. Amazon Redshift is fully managed, scalable, cloud data warehouse. This is achieved by partitioning the data.

article thumbnail

How to Build a Performant Data Warehouse in Redshift

Sisense

This blog is intended to give an overview of the considerations you’ll want to make as you build your Redshift data warehouse to ensure you are getting the optimal performance. First, we’ll dive into the two types of databases: OLAP (Online Analytical Processing) and OLTP (Online Transaction Processing).

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Unlock scalability, cost-efficiency, and faster insights with large-scale data migration to Amazon Redshift

AWS Big Data

Large-scale data warehouse migration to the cloud is a complex and challenging endeavor that many organizations undertake to modernize their data infrastructure, enhance data management capabilities, and unlock new business opportunities. This makes sure the new data platform can meet current and future business goals.

article thumbnail

How Aura from Unity revolutionized their big data pipeline with Amazon Redshift Serverless

AWS Big Data

Amazon Redshift is a recommended service for online analytical processing (OLAP) workloads such as cloud data warehouses, data marts, and other analytical data stores. These queries are run on data that resides in an RA3 provisioned Redshift cluster.

article thumbnail

The Enterprise AI Revolution Starts with BI

Jet Global

Which problems do disparate data points speak to? And how can the data collected across multiple touchpoints, from retail locations to the supply chain to the factory be easily integrated? Enter data warehousing.

article thumbnail

Navigating Data Entities, BYOD, and Data Lakes in Microsoft Dynamics

Jet Global

For more sophisticated multidimensional reporting functions, however, a more advanced approach to staging data is required. The Data Warehouse Approach. Data warehouses gained momentum back in the early 1990s as companies dealing with growing volumes of data were seeking ways to make analytics faster and more accessible.

article thumbnail

Financial Intelligence vs. Business Intelligence: What’s the Difference?

Jet Global

First, accounting moved into the digital age and made it possible for data to be processed and summarized more efficiently. Spreadsheets enabled finance professionals to access data faster and to crunch the numbers with much greater ease. Today’s technology takes this evolution a step further.