Remove Data Warehouse Remove Publishing Remove Snapshot
article thumbnail

Open Data Lakehouse powered by Iceberg for all your Data Warehouse needs

Cloudera

In this blog, we will share with you in detail how Cloudera integrates core compute engines including Apache Hive and Apache Impala in Cloudera Data Warehouse with Iceberg. We will publish follow up blogs for other data services. Iceberg basics Iceberg is an open table format designed for large analytic workloads.

article thumbnail

Simplify data integration with AWS Glue and zero-ETL to Amazon SageMaker Lakehouse

AWS Big Data

With this new functionality, customers can create up-to-date replicas of their data from applications such as Salesforce, ServiceNow, and Zendesk in an Amazon SageMaker Lakehouse and Amazon Redshift. SageMaker Lakehouse gives you the flexibility to access and query your data in-place with all Apache Iceberg compatible tools and engines.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Unlock scalability, cost-efficiency, and faster insights with large-scale data migration to Amazon Redshift

AWS Big Data

Large-scale data warehouse migration to the cloud is a complex and challenging endeavor that many organizations undertake to modernize their data infrastructure, enhance data management capabilities, and unlock new business opportunities. This makes sure the new data platform can meet current and future business goals.

article thumbnail

Build a serverless transactional data lake with Apache Iceberg, Amazon EMR Serverless, and Amazon Athena

AWS Big Data

They enable transactions on top of data lakes and can simplify data storage, management, ingestion, and processing. These transactional data lakes combine features from both the data lake and the data warehouse. The Data Catalog provides a central location to govern and keep track of the schema and metadata.

Data Lake 121
article thumbnail

Unlock insights on Amazon RDS for MySQL data with zero-ETL integration to Amazon Redshift

AWS Big Data

The extract, transform, and load (ETL) process has been a common pattern for moving data from an operational database to an analytics data warehouse. ELT is where the extracted data is loaded as is into the target first and then transformed. ETL and ELT pipelines can be expensive to build and complex to manage.

article thumbnail

Snowflake and Domino: Better Together

Domino Data Lab

Data Science works best with a high degree of data granularity when the data offers the closest possible representation of what happened during actual events – as in financial transactions, medical consultations or marketing campaign results. Integration Features.

article thumbnail

Configure monitoring, limits, and alarms in Amazon Redshift Serverless to keep costs predictable

AWS Big Data

It automatically provisions and intelligently scales data warehouse compute capacity to deliver fast performance, and you pay only for what you use. Just load your data and start querying right away in the Amazon Redshift Query Editor or in your favorite business intelligence (BI) tool. Ashish Agrawal is a Sr.

Metrics 98