Remove Data Warehouse Remove Snapshot Remove Software
article thumbnail

MLOps and DevOps: Why Data Makes It Different

O'Reilly on Data

This is both frustrating for companies that would prefer making ML an ordinary, fuss-free value-generating function like software engineering, as well as exciting for vendors who see the opportunity to create buzz around a new category of enterprise software. All ML projects are software projects.

IT 363
article thumbnail

Run Apache XTable in AWS Lambda for background conversion of open table formats

AWS Big Data

This post was co-written with Dipankar Mazumdar, Staff Data Engineering Advocate with AWS Partner OneHouse. Data architecture has evolved significantly to handle growing data volumes and diverse workloads. Then XTable translates between source and target formats and writes the new metadata on the same data store.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Load data incrementally from transactional data lakes to data warehouses

AWS Big Data

Data lakes and data warehouses are two of the most important data storage and management technologies in a modern data architecture. Data lakes store all of an organization’s data, regardless of its format or structure. Delta Lake doesn’t have a specific concept for incremental queries.

Data Lake 122
article thumbnail

Building end-to-end data lineage for one-time and complex queries using Amazon Athena, Amazon Redshift, Amazon Neptune and dbt

AWS Big Data

Complex queries, on the other hand, refer to large-scale data processing and in-depth analysis based on petabyte-level data warehouses in massive data scenarios. AWS Glue crawler crawls data lake information from Amazon S3, generating a Data Catalog to support dbt on Amazon Athena data modeling.

article thumbnail

Cloud Data Warehouse Migration 101: Expert Tips

Alation

It’s costly and time-consuming to manage on-premises data warehouses — and modern cloud data architectures can deliver business agility and innovation. However, CIOs declare that agility, innovation, security, adopting new capabilities, and time to value — never cost — are the top drivers for cloud data warehousing.

article thumbnail

Implement historical record lookup and Slowly Changing Dimensions Type-2 using Apache Iceberg

AWS Big Data

This approach has been widely used in data warehouses to track changes in various dimensions such as customer information, product details, and employee data. It enables point-in-time analysis, provides detailed audit trails, aids in data quality management, and helps meet compliance requirements by preserving historical data.

article thumbnail

Implement data warehousing solution using dbt on Amazon Redshift

AWS Big Data

Managing the SQL files, integrating cross-team work, incorporating all software engineering principles, and importing external utilities can be a time-consuming task that requires complex design and lots of preparation. Snapshots – These implements type-2 slowly changing dimensions (SCDs) over mutable source tables.

Snapshot 104