Remove Data Warehouse Remove Software Remove Unstructured Data
article thumbnail

Understanding the Differences Between Data Lakes and Data Warehouses

Smart Data Collective

Data lakes and data warehouses are probably the two most widely used structures for storing data. Data Warehouses and Data Lakes in a Nutshell. A data warehouse is used as a central storage space for large amounts of structured data coming from various sources. Key Differences.

Data Lake 140
article thumbnail

Amazon Web Services named a Leader in the 2024 Gartner Magic Quadrant for Data Integration Tools

AWS Big Data

Many thousands of customers across various industries are using these services to transform, operationalize, and manage their data across data lakes and data warehouses. This includes the data integration capabilities mentioned above, with support for both structured and unstructured data.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Understanding Structured and Unstructured Data

Sisense

Different types of information are more suited to being stored in a structured or unstructured format. Read on to explore more about structured vs unstructured data, why the difference between structured and unstructured data matters, and how cloud data warehouses deal with them both.

article thumbnail

Top 5 Tools for Building an Interactive Analytics App

Smart Data Collective

The application presents a massive volume of unstructured data through a graphical or programming interface using the analytical abilities of business intelligence technology to provide instant insight. Interactive analytics applications present vast volumes of unstructured data at scale to provide instant insights.

article thumbnail

Run Apache XTable in AWS Lambda for background conversion of open table formats

AWS Big Data

Data architecture has evolved significantly to handle growing data volumes and diverse workloads. Initially, data warehouses were the go-to solution for structured data and analytical workloads but were limited by proprietary storage formats and their inability to handle unstructured data.

article thumbnail

The DataOps Vendor Landscape, 2021

DataKitchen

RightData – A self-service suite of applications that help you achieve Data Quality Assurance, Data Integrity Audit and Continuous Data Quality Control with automated validation and reconciliation capabilities. QuerySurge – Continuously detect data issues in your delivery pipelines. Production Monitoring Only.

Testing 300
article thumbnail

The Increasing Importance of Open Table Formats

David Menninger's Analyst Perspectives

It was not until the addition of open table formats— specifically Apache Hudi, Apache Iceberg and Delta Lake—that data lakes truly became capable of supporting multiple business intelligence (BI) projects as well as data science and even operational applications and, in doing so, began to evolve into data lakehouses.

Data Lake 130