Remove Deep Learning Remove Experimentation Remove Optimization
article thumbnail

Bringing an AI Product to Market

O'Reilly on Data

Without clarity in metrics, it’s impossible to do meaningful experimentation. AI PMs must ensure that experimentation occurs during three phases of the product lifecycle: Phase 1: Concept During the concept phase, it’s important to determine if it’s even possible for an AI product “ intervention ” to move an upstream business metric.

Marketing 362
article thumbnail

MLOps and DevOps: Why Data Makes It Different

O'Reilly on Data

ML apps need to be developed through cycles of experimentation: due to the constant exposure to data, we don’t learn the behavior of ML apps through logical reasoning but through empirical observation. Not only is data larger, but models—deep learning models in particular—are much larger than before. Model Operations.

IT 349
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Deep Learning Illustrated: Building Natural Language Processing Models

Domino Data Lab

Many thanks to Addison-Wesley Professional for providing the permissions to excerpt “Natural Language Processing” from the book, Deep Learning Illustrated by Krohn , Beyleveld , and Bassens. The excerpt covers how to create word vectors and utilize them as an input into a deep learning model. Introduction.

article thumbnail

The DataOps Vendor Landscape, 2021

DataKitchen

Observe, optimize, and scale enterprise data pipelines. . Metis Machine — Enterprise-scale Machine Learning and Deep Learning deployment and automation platform for rapid deployment of models into existing infrastructure and applications. Polyaxon — An open-source platform for reproducible machine learning at scale.

Testing 312
article thumbnail

What you need to know about product management for AI

O'Reilly on Data

Because it’s so different from traditional software development, where the risks are more or less well-known and predictable, AI rewards people and companies that are willing to take intelligent risks, and that have (or can develop) an experimental culture. Managing Machine Learning Projects” (AWS). People + AI Guidebook” (Google).

article thumbnail

The key to operational AI: Modern data architecture

CIO Business Intelligence

Recent research shows that 67% of enterprises are using generative AI to create new content and data based on learned patterns; 50% are using predictive AI, which employs machine learning (ML) algorithms to forecast future events; and 45% are using deep learning, a subset of ML that powers both generative and predictive models.

article thumbnail

12 data science certifications that will pay off

CIO Business Intelligence

The certification consists of several exams that cover topics such as machine learning, natural language processing, computer vision, and model forecasting and optimization. You should also have experience with pattern detection, experimentation in business optimization techniques, and time-series forecasting.