Remove Document Remove Metadata Remove Metrics
article thumbnail

Enhance data governance with enforced metadata rules in Amazon DataZone

AWS Big Data

We’re excited to announce a new feature in Amazon DataZone that offers enhanced metadata governance for your subscription approval process. With this update, domain owners can define and enforce metadata requirements for data consumers when they request access to data assets. Key benefits The feature benefits multiple stakeholders.

article thumbnail

Enrich your AWS Glue Data Catalog with generative AI metadata using Amazon Bedrock

AWS Big Data

Metadata can play a very important role in using data assets to make data driven decisions. Generating metadata for your data assets is often a time-consuming and manual task. This post shows you how to enrich your AWS Glue Data Catalog with dynamic metadata using foundation models (FMs) on Amazon Bedrock and your data documentation.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Monitoring Apache Iceberg metadata layer using AWS Lambda, AWS Glue, and AWS CloudWatch

AWS Big Data

In this blog post, we’ll discuss how the metadata layer of Apache Iceberg can be used to make data lakes more efficient. You will learn about an open-source solution that can collect important metrics from the Iceberg metadata layer. It supports two types of reports: one for commits and one for scans.

Metadata 112
article thumbnail

Deploy Amazon QuickSight dashboards to monitor AWS Glue ETL job metrics and set alarms

AWS Big Data

In this post, we explore how to combine AWS Glue usage information and metrics with centralized reporting and visualization using QuickSight. You have metrics available per job run within the AWS Glue console, but they don’t cover all available AWS Glue job metrics, and the visuals aren’t as interactive compared to the QuickSight dashboard.

Metrics 94
article thumbnail

The Ultimate Guide to Modern Data Quality Management (DQM) For An Effective Data Quality Control Driven by The Right Metrics

datapine

6) Data Quality Metrics Examples. Reporting being part of an effective DQM, we will also go through some data quality metrics examples you can use to assess your efforts in the matter. It involves: Reviewing data in detail Comparing and contrasting the data to its own metadata Running statistical models Data quality reports.

article thumbnail

Building Your Human Benchmark with Ontotext Metadata Studio

Ontotext

In text analytics, the human benchmark is a set of documents manually annotated by human experts. You’ll also be able to establish an inter-annotator agreement (IAA) metric. What Are The Benefits Of Using Ontotext Metadata Studio? What Is A Human Benchmark?

article thumbnail

Use Amazon Kinesis Data Streams to deliver real-time data to Amazon OpenSearch Service domains with Amazon OpenSearch Ingestion

AWS Big Data

For agent-based solutions, see the agent-specific documentation for integration with OpenSearch Ingestion, such as Using an OpenSearch Ingestion pipeline with Fluent Bit. This includes adding common fields to associate metadata with the indexed documents, as well as parsing the log data to make data more searchable.